Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034217    DOI: 10.1088/1674-1056/21/3/034217
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coupling characteristics of high birefringence dual-core As2S3 rectangular lattice photonic crystal fiber

Liu Shuo(刘硕), Li Shu-Guang(李曙光), Yin Guo-Bing(尹国冰), and Wang Xiao-Yan(王晓琰)
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  A type of As2S3 chalcogenide glass mid-infrared dual-core photonic crystal fiber has been proposed. The dual-core photonic crystal fiber (PCF) consists of two asymmetric cores. The high polarization property and the coupling characteristics have been studied by using the finite element method and mode coupling theory. Numerical results show that the birefringence at wavelength $\lambda$ = 10 μm is up to 0.01386 and the coupling length can reach wavelength $\lambda$ = 5 μm, 261 μm and 271.44 μm for x-polarized mode and y-polarized mode, respectively. It demonstrates that a 6.786-mm-long fiber can exhibit an extinction ratio of better than -10 dB and a bandwidth of 180 nm.
Keywords:  photonic crystal fiber      birefringence      coupling length      mid-infrared  
Received:  17 April 2011      Revised:  21 August 2011      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Gs (Birefringence, polarization)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874145), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010), the Natural Science Foundation of Hebei Province, China (Grant No. F2009000481), and the China Postdoctoral Science Foundation (Grant Nos. 20080440014 and 200902046).
Corresponding Authors:  Li Shu-Guang,shuguangli@ysu.edu.cn     E-mail:  shuguangli@ysu.edu.cn

Cite this article: 

Liu Shuo(刘硕), Li Shu-Guang(李曙光), Yin Guo-Bing(尹国冰), and Wang Xiao-Yan(王晓琰) Coupling characteristics of high birefringence dual-core As2S3 rectangular lattice photonic crystal fiber 2012 Chin. Phys. B 21 034217

[1] Zhang L, Li S G, Yao Y Y, Fu B, Zhang M Y and Zheng Y 2010 Acta Phys. Sin. 59 1101 (in Chinese)
[2] Rahman B M A, Kabir A K M S, Rajarajan M, Grattan K T V and Rakocevic V 2006 Appl. Phys. B 84 75
[3] Buczynski R, Kujawa I, Pysz D, Martynkien T, Berghmans F, Thienpont H and Stepien R 2010 Appl. Phys. B 99 13
[4] Guo Y Y and Hou L T 2010 Acta Phys. Sin. 59 4036 (in Chinese)
[5] Abdelaziz I, Ademgil H, AbdelMalek F, Haxha S, Gorman T and Bouchriha H 2010 Opt. Commun. 283 5218
[6] Zhang X, Hu M L, Song Y J, Chai L and Wang Q Y 2010 Acta Phys. Sin. 59 1863 (in Chinese)
[7] Agrawal A, Kejalakshmy N, Rahman B and Grattan K 2010 Appl. Phys. B 99 717
[8] Kim S, Kee C S and Lee C G 2009 Opt. Express 17 7952
[9] Zhao Y, Shi W H and Jiang Y J 2010 Acta Phys. Sin. 59 6279 (in Chinese)
[10] Ademgil H and Haxha S 2009 Opt. Commun. 282 2831
[11] Yan H F, Yu Z Y, Tian H D, Liu Y M and Han L H 2010 Acta Phys. Sin. 59 3273 (in Chinese)
[12] Varshney S K, Florous N J, Saitoh K and Koshiba M 2006 Opt. Express 14 1982
[13] Argyros A, Leon-Saval S G and van Eijkelenborg M A 2009 Opt. Commun. 282 1785
[14] Liu M and Chiang K 2010 Appl. Phys. B 98 815
[15] Salgueiro J R and Santos F 2009 J. Opt. Soc. Am. B 26 2301
[16] Roy S and Roy Chaudhuri P 2009 Opt. Commun. 282 3448
[17] Ung B and Skorobogatiy M 2010 Opt. Express 18 8647
[18] Tsay C, Mujagi E, Madsen C K, Gmachl C F and Arnold C B 2010 Opt. Express 18 15523
[19] Lepine E, Yang Z, Gueguen Y, Troles J, Zhang X H, Bureau B, Boussard-Pledel C, Sangleboeuf J C and Lucas P 2010 J. Opt. Soc. Am. B 27 966
[20] Brechet F, Marcou J, Pagnoux D and Roy P 2000 Optical Fiber Technology 6 181
[21] Jiang L H, Hou L T and Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese)
[22] Dianov E M, Petrov M Y, Plotnichenko V G and Sysoev V K 1982 Soviet Journal of Quantum Electronics 12 498
[23] Fogli F, Saccomandi L, Bassi P, Bellanca G and Trillo S 2002 Opt. Express 10 54
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[5] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[6] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[7] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[8] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[9] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[10] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[11] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[12] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[13] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[14] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[15] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
No Suggested Reading articles found!