Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104210    DOI: 10.1088/1674-1056/21/10/104210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

Ren Cheng (任承), Cheng Li-Feng (程立锋), Kang Feng (康凤), Gan Lin (甘霖), Zhang Dao-Zhong (张道中), Li Zhi-Yuan (李志远)
a School of Opto-Electronic Information Science and Technology, Yantai University, Yantai 264005, China;
b Wenjing College, Yantai University, Yantai 264005, China;
c Optical Physics Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs. In order to improve the filtering efficiency, a feedback method is introduced by closing the waveguide. It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency. Based on our analyses, two different types of filters are designed. The transmission spectra and scattering-light far-field patterns are measured, which agree well with theoretical prediction. In addition, the resonant filters are highly sensitive to the size of the resonant cavities, which are useful for practical applications.
Keywords:  photonic crystal slabs      filter      finite-difference time-domain method  
Received:  29 June 2012      Revised:  10 July 2012      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.82.Gw (Other integrated-optical elements and systems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004169), the National Basic Research Program of China (Grant No. 2011CB922002), and the Doctoral Foundation of Shandong Province, China (Grant No. BS2009CL028).
Corresponding Authors:  Ren Cheng     E-mail:  cren@ytu.edu.cn

Cite this article: 

Ren Cheng (任承), Cheng Li-Feng (程立锋), Kang Feng (康凤), Gan Lin (甘霖), Zhang Dao-Zhong (张道中), Li Zhi-Yuan (李志远) Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs 2012 Chin. Phys. B 21 104210

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Tokushima M and Yamada H 2002 IEEE J. Quantum Electron. 38 753
[4] Han S Z, Tian J, Ren C, Xu X S, Li Z Y, Cheng B Y and Zhang D Z 2005 Chin. Phys. Lett. 22 1934
[5] Tian J, Han S Z, Cheng B Y, Li Z Y, Feng S, Zhang D Z and Jin A Z 2005 Acta Phys. Sin. 54 1218 (in Chinese)
[6] Tang H X, Zuo Y H, Yu J Z and Wang Q M 2008 Chin. Phys. B 17 228
[7] Liu Y Z, Liu R J, Zhou C Z, Zhang D Z and Li Z Y 2008 Opt. Express 16 21483
[8] Zhu Q Y, Fu Y Q, Hu D Q and Zhang Z M 2012 Chin. Phys. B 21 064220
[9] Song B S, Noda S, Asano T and Akahane Y 2005 Nature Mater. 4 207
[10] Akahane Y, Asano T, Song B S and Noda S 2005 Opt. Express 13 1202
[11] Fan S, Villeneuve P R, Joannopoulos J D and Haus H A 1998 Phys. Rev. Lett. 80 960
[12] Chutinan A, Mochizuki M, Imada M and Noda S 2001 Appl. Phys. Lett. 79 2690
[13] Takano H, Akahane Y, Asano T and Noda S 2004 Appl. Phys. Lett. 84 2226
[14] Takano H, Song B S, Asano T and Noda S 2005 Appl. Phys. Lett. 86 241101
[15] Takano S, Song B S and Noda S 2006 Opt. Express 14 3491
[16] Notomi M, Shinya A, Mitsugi S, Kuramochi E and Ryu H Y 2004 Opt. Express 2 1551
[17] Shinya A, Mitsugi S, Kuramochi E and Notomi M 2005 Opt. Express 13 4202
[18] Ren C, Tian J, Feng S, Tao H H, Liu Y Z, Ren K, Li Z Y, Cheng B Y, Zhang D Z and Yang H F 2006 Opt. Express 14 10014
[19] Zhao Y N, Li K Z, Wang X H and Jin C J 2011 Chin. Phys. B 20 074210
[20] Liu Y Z, Liu R J, Feng S, Ren C, Yang H F, Zhang D Z and Li Z Y 2008 Appl. Phys. Lett. 93 241107
[21] Zhang Z Y and Qiu M 2006 J. Opt. Soc. Am. B 23 104
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[6] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[7] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[8] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[9] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[10] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[11] A novel low-loss four-bit bandpass filter using RF MEMS switches
Lulu Han(韩路路), Yu Wang(王宇), Qiannan Wu(吴倩楠), Shiyi Zhang(张世义), Shanshan Wang(王姗姗), and Mengwei Li(李孟委). Chin. Phys. B, 2022, 31(1): 018506.
[12] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[13] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[14] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[15] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
No Suggested Reading articles found!