Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100506    DOI: 10.1088/1674-1056/21/10/100506
GENERAL Prev   Next  

Fractional-order permanent magnet synchronous motor and its adaptive chaotic control

Li Chun-Laia c, Yu Si-Mina, Luo Xiao-Shub
a College of Automation, Guangdong University of Technology, Guangzhou 510006, China;
b College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;
c College of Physics and Electronics, Hunan Institute of Science and Technology, Yueyang 414006, China
Abstract  In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM). The necessary condition for the existence of chaos in the fractional-order PMSM is deduced. And an adaptive-feedback controller is developed based on the stability theory for fractional systems. The presented control scheme, which contains only one single state variable, is simple and flexible, and it is suitable both for design and for implementation in practice. Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.
Keywords:  fractional-order      permanent magnet synchronous motor      adaptive chaotic control     
Received:  25 February 2012      Published:  01 September 2012
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Ac (Low-dimensional chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172023, 60871025, and 10862001), the Natural Science Foundation of Guangdong Province, China (Grant Nos. S2011010001018 and 8151009001000060), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114420110003).
Corresponding Authors:  Li Chun-Lai     E-mail:

Cite this article: 

Li Chun-Lai, Yu Si-Min, Luo Xiao-Shu Fractional-order permanent magnet synchronous motor and its adaptive chaotic control 2012 Chin. Phys. B 21 100506

[1] Slemon G R 1994 Proceeding of IEEE 82 1123
[2] Li Z, Park J, Zhang B and Chen G 2002 IEEE Trans. Circ. Syst. I 49 383
[3] Jing Z, Yu C and Chen G 2004 Chaos, Solitons and Fractals 22 831
[4] Li D, Wang S L, Zhang X H and Yang D 2010 Chin. Phys. B 19 010506
[5] Li C L 2009 Acta Phys. Sin. 58 12 (in Chinese)
[6] Wei D Q and Zhang B 2012 Acta Phys. Sin. 61 030505 (in Chinese)
[7] Wei D Q and Zhang B 2009 Chin. Phys. B 18 1399
[8] Li C L and Yu S M 2011 Acta Phys. Sin. 60 120505 (in Chinese)
[9] Bagley R L and Calico R A 1991 J. Guid. Control Dyn. 14 304
[10] Koeller R C 1986 Acta Mech. 58 251
[11] Sun H H, Abdelwahad A A and Onaval B 1984 IEEE Trans. Autom. Control 29 441
[12] Heaviside O 1971 Electromagnetic Theory (New York: Chelsea)
[13] Yu Y, Li H X, Wang S and Yu J 2009 Chaos, Solitons and Fractals 42 1181
[14] Li C G and Chen G 2004 Physica A 341 55
[15] Lü J G and Chen G 2006 Chaos, Solitons and Fractals 27 685
[16] Deng W and Li C P 2005 Physica A 353 61
[17] Mandelbort B B 1983 The Fractal Geometry of Nature (New York: Freeman)
[18] Ahmad W M, El-Khazali R and Al-Assaf Y 2004 Chaos, Solitons and Fractals 22 141
[19] Yin C, Zhong S M and Chen W F 2012 Commun. Nonlinear Sci. Numer. Simul. 17 356
[20] Zaher A A 2008 Chaos 18 13111
[21] Matignon D 1996 IMACS, IEEE-SMC, Lille, France p. 963
[1] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[2] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[3] Coexistence and local Mittag-Leffler stability of fractional-order recurrent neural networks with discontinuous activation functions
Yu-Jiao Huang(黄玉娇), Shi-Jun Chen(陈时俊), Xu-Hua Yang(杨旭华), Jie Xiao(肖杰). Chin. Phys. B, 2019, 28(4): 040701.
[4] Ghost images reconstructed from fractional-order moments with thermal light
De-Zhong Cao(曹德忠), Qing-Chen Li(李清晨), Xu-Cai Zhuang(庄绪财), Cheng Ren(任承), Su-Heng Zhang(张素恒), Xin-Bing Song(宋新兵). Chin. Phys. B, 2018, 27(12): 123401.
[5] Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method
Sujuan Li(李素娟), Jiangchuan Niu(牛江川), Xianghong Li(李向红). Chin. Phys. B, 2018, 27(12): 120502.
[6] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[7] Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor
En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会). Chin. Phys. B, 2018, 27(1): 010503.
[8] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[9] Attempt to generalize fractional-order electric elements to complex-order ones
Gangquan Si(司刚全), Lijie Diao(刁利杰), Jianwei Zhu(朱建伟), Yuhang Lei(雷妤航), Yanbin Zhang(张彦斌). Chin. Phys. B, 2017, 26(6): 060503.
[10] Adaptive fuzzy synchronization for a class of fractional-order neural networks
Heng Liu(刘恒), Sheng-Gang Li(李生刚), Hong-Xing Wang(王宏兴), Guan-Jun Li(李冠军). Chin. Phys. B, 2017, 26(3): 030504.
[11] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[12] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng, Li Sheng-Gang, Sun Ye-Guo, Wang Hong-Xing. Chin. Phys. B, 2015, 24(9): 090505.
[13] Fractional-order LβCα filter circuit network
Hong Zheng, Qian Jing, Chen Di-Yi, Herbert H. C. Iu. Chin. Phys. B, 2015, 24(8): 080204.
[14] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[15] A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors
Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small. Chin. Phys. B, 2015, 24(6): 060507.
No Suggested Reading articles found!