Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010503    DOI: 10.1088/1674-1056/27/1/010503
GENERAL Prev   Next  

Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor

En-Zeng Dong(董恩增)1, Zhen Wang(王震)1, Xiao Yu(于晓)1, Zeng-Qiang Chen(陈增强)2, Zeng-Hui Wang(王增会)3
1 Tianjin Key Laboratory For Control Theory & Applications in Complicated Systems, Tianjin University of Technology, Tianjin 300384, China;
2 Department of Automation, Nankai University, Tianjin 300071, China;
3 Department of Electrical and Mining Engineering, University of South Africa, Florida 1710, South Africa
Abstract  We present a fractional-order three-dimensional chaotic system, which can generate four-wing chaotic attractor. Dynamics of the fractional-order system is investigated by numerical simulations. To rigorously verify the chaos properties of this system, the existence of horseshoe in the four-wing attractor is presented. Firstly, a Poincaré section is selected properly, and a first-return Poincaré map is established. Then, a one-dimensional tensile horseshoe is discovered, which verifies the chaos existence of the system in mathematical view. Finally, the fractional-order chaotic attractor is implemented physically with a field-programmable gate array (FPGA) chip, which is useful in further engineering applications of information encryption and secure communications.
Keywords:  fractional-order chaotic system      Poincaré map      topological horseshoe      field-programmable gate array (FPGA)  
Received:  20 September 2017      Revised:  16 October 2017      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61502340 and 61374169), the Application Base and Frontier Technology Research Project of Tianjin, China (Grant No. 15JCYBJC51800), and the South African National Research Foundation Incentive Grants (Grant No. 81705).
Corresponding Authors:  En-Zeng Dong     E-mail:  dongenzeng@163.com

Cite this article: 

En-Zeng Dong(董恩增), Zhen Wang(王震), Xiao Yu(于晓), Zeng-Qiang Chen(陈增强), Zeng-Hui Wang(王增会) Topological horseshoe analysis and field-programmable gate array implementation of a fractional-order four-wing chaotic attractor 2018 Chin. Phys. B 27 010503

[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Chua LO, Komuro M and T Matsumoto 1986 IEEE Trans. Circuit Syst. 33 1072
[3] Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 09 1465
[4] Qi G Y, van Wyk B J, van Wyk M A and Chen G R 2009 Chaos Soliton. Fract. 40 2016
[5] Danca M F and Tang W K S 2016 Chin. Phys. B 25 010505
[6] Chen L P, Chai Y, Wu R W, Sun J and Ma T D 2012 Phys. Lett. A 376 2381
[7] Liu H, Li S G, Sun Y G and Wang H X 2015 Chin. Phys. B 24 090505
[8] Wang Q, Ding D S and Qi D L 2015 Chin. Phys. B 24 060508
[9] Xin B and Zhang J 2015 Nonlinear Dyn. 79 1399
[10] Cafagna D and Grassi G 2015 Chin. Phys. B 24 080502
[11] Jia H Y, Chen Z Q and Qi G Y 2011 Nonlinear Dyn. 65 131
[12] Zambrano-Serrano E, Campos-Cantón E and Muñoz-Pacheco J M 2016 Nonlinear Dyn. 83 1629
[13] Jia H Y, Chen Z Q and Qi G Y 2013 Nonlinear Dyn. 74 203
[14] Dong E Z, Liang Z H, Du S Z and Chen Z Q 2016 Nonlinear Dyn. 83 623
[15] Wang Q X, Yu S M, Guyeux C, Bahi J and Fang X L 2015 Chin. Phys. B 24 060503
[16] Zhou Y, Ionescu C and Machado J A T 2015 Nonlinear Dyn. 80 1661
[17] Rajagopal K, Karthikeyan A and Srinivasan AK 2017 Nonlinear Dyn. 87 2281
[18] Dong E Z, Chen Z P, Chen Z Q and Yuan Z Z 2009 Chin. Phys. B 18 2680
[19] Luo C and Wang X 2013 Nonlinear Dyn. 71 241
[20] Ahmad W M and Sprott J C 2003 Chaos Soliton. Fract. 16 339
[21] Lu J G and Chen G R 2006 Chaos Soliton. Fract. 27 685
[22] Lu J G 2006 Phys. Lett. A 354 305
[23] Gao Z and Liao X 2012 Nonlinear Dyn. 67 1387
[24] Li C G and Chen G R 2004 Phys. A 341 55
[25] Ahmad W M and Sprott J C 2003 Chaos Soliton. Fract. 16 339
[26] Smale S 1967 Bull. Amer. Math. Soc. 73 747
[27] Kennedy J, Kocak S and Yorke J A 2001 Am. Math. Mon. 108 411
[28] Kennedy J and Yorke J A 2001 Trans. Amer. Math. Soc. 353 2513
[29] Yang X S, Yu Y G and Zhang S C 2003 Chaos Soliton. Fract. 18 223
[30] Yang X S and Li Q D 2004 Int. J. Bifurc. Chaos. 14 1847
[31] Yang X S and Li Q D 2006 Chaos Soliton. Fract. 27 25
[32] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer)
[33] Fan Q J 2010 Chin. Phys. B 19 120508
[34] Li Q D, Chen S and Zhou P 2011 Chin. Phys. B 20 010502
[35] Guo Y and Qi G Y 2016 Optik Int. J. Light Electron Opt. 127 5500
[36] Wang Z L, Zhou L L, Chen Z Q and Wang J Z 2016 Nonlinear Dyn. 83 2055
[37] Xu Y M, Wang L D and Duan S K 2016 Acta Phys. Sin. 65 120503 (in Chinese)
[38] Akgul A, Calgan H, Koyuncu I, Pehlivan I and Istanbullu A 2016 Nonlinear Dyn. 84 481
[39] Alçn M, Pehlivan İ and Koyuncu İ 2016 Optik Int. J. Light Electron Opt. 127 5500
[40] Ferdi Y 2009 Comput. Electr. Eng. 35 722
[1] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[2] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[3] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[4] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[5] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕). Chin. Phys. B, 2013, 22(4): 040507.
[6] Robust modified projective synchronization of fractional-order chaotic systems with parameters perturbation and external disturbance
Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕). Chin. Phys. B, 2013, 22(10): 100504.
[7] A single adaptive controller with one variable for synchronization of fractional-order chaotic systems
Zhang Ruo-Xun (张若洵), Yang Shi-Ping (杨世平). Chin. Phys. B, 2012, 21(8): 080505.
[8] Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping(杨世平) . Chin. Phys. B, 2012, 21(3): 030505.
[9] A general method for synchronizing an integer-order chaotic system and a fractional-order chaotic system
Si Gang-Quan(司刚全), Sun Zhi-Yong(孙志勇), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(8): 080505.
[10] Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping (杨世平) . Chin. Phys. B, 2011, 20(11): 110506.
[11] Horseshoe and entropy in a fractional-order unified system
Li Qing-Du(李清都), Chen Shu(陈述), and Zhou Ping(周平). Chin. Phys. B, 2011, 20(1): 010502.
[12] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
Zhou Ping(周平), Cheng Yuan-Ming(程元明), and Kuang Fei(邝菲). Chin. Phys. B, 2010, 19(9): 090503.
[13] A specific state variable for a class of 3D continuous fractional-order chaotic systems
Zhou Ping(周平), Cheng Yuan-Ming(程元明), and Kuang Fei(邝菲). Chin. Phys. B, 2010, 19(7): 070507.
[14] Adaptive synchronisation of fractional-order chaotic systems
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping(杨世平). Chin. Phys. B, 2010, 19(2): 020510.
[15] Topological horseshoe in nonlinear Bloch system
Fan Qing-Ju(樊庆菊). Chin. Phys. B, 2010, 19(12): 120508.
No Suggested Reading articles found!