Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016102    DOI: 10.1088/1674-1056/21/1/016102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Carbon nanotube–cuprous oxide composite based pressure sensors

Kh. S. Karimova)b), Muhammad Tariq Saeed Chania), Fazal Ahmad Khalida), Adam Khana), and Rahim Khana)
a GIK Institute of Engineering Sciences and Technology, Topi 23640, District Swabi, Pakistan; b Physical Technical Institute of Academy of Sciences, Rudaki Ave. 33, Dushanbe 734025, Tajikistan
Abstract  In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu2O composite based pressure sensors. The pressed tablets of the CNT-Cu2O composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu2O micro particles are in the range of 3-4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 ×as the pressure increases up to 37 kN/m2. The simulation result of the resistance-pressure relationship is in good agreement with the experimental result within a variation of ± 2%.
Keywords:  carbon nanotubes      Cu2O micro-powder      pressure sensor      simulation  
Received:  07 July 2011      Revised:  16 August 2011      Accepted manuscript online: 
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  72.20.Fr (Low-field transport and mobility; piezoresistance)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  

Cite this article: 

Kh. S. Karimov, Muhammad Tariq Saeed Chani, Fazal Ahmad Khalid, Adam Khan, and Rahim Khan Carbon nanotube–cuprous oxide composite based pressure sensors 2012 Chin. Phys. B 21 016102

[1] Simpson C D 1996 Industrial Electronics (Englewood Cliffs: Prentice Hall)
[2] Dally J W, Riley W F and McConnell K G 1993 Instrumentation for Engineering Measurements (2nd Edn.) (New York: Wiley)
[3] Bautista-Quijanoa J R, Avilesa F, Aguilara J O and Tapiab A 2010 Sens. Actuators A 159 135
[4] Hwang J, Jang J, Hong K, Kim K N, Han J H, Shin K and Park C E 2011 Carbon 49 106
[5] Landi B J, Raffaelle R P, Castro S L and Bailey S G 2005 Prog. Photovolt. 13 1
[6] Hatton R A, Miller A J and Silva S R P 2008 J. Mater. Chem. 18 1183
[7] Grow R J, Wang Q, Cao J, Wang D and Dai H 2005 Appl. Phys. Lett. 86 093104
[8] Saleem M, Karimov Kh S, Karieva Z M and Mateen A 2010 Physica E 43 28
[9] Tang D, Ci L, Zhou W and Xie S 2006 Carbon 44 2155
[10] Martel R, Schmidt T, Shea H R, Hertel T and Avouris P 1998 Appl. Phys. Lett. 73 2447
[11] Cao J, Wang Q and Dai H 2003 Phys. Rev. Lett. 90 157601
[12] Xue W and Cui T 2000 Proc. 14th Int. Conf. Solid State Sensors Actuators Microsystems, June 10-14, 2007 Lyon, France, p. 1047
[13] Yong L, Wanlu W, Kejun L, Chenguo H, Zhi H H and Oing F 2003 Chin. Sci. Bull. 48 125
[14] Regoliosi P, Reale A, Dicarlo A, Orlanducci S, Terranova M L and Lugli P 2004 Proc. 4th IEEE Conf. Nanotechnology, August 16-19, 2004, Munich, Germany, p. 149
[15] Stampfer C, Helbling T, Junger A and Hierold C 2000 Proc. 14th Int. Conf. Solid State Sensors Actuators Microsystems, June 10-14, 2007 Lyon, France, p. 1565
[16] Baughman R H, Cui C, Zakhidov A, Iqbal Z, Barisci J N, Spinks G M, Wallace G G, Mazoldi A, de Rossi D, Rinzler A G, Jaschinki O, Roth S and Kertesz M 1999 Science 284 1340
[17] Wang X, Zhang F, Xia B, Zhu X, Chen J, Qiu S, Zhang P and Li J 2009 Solid State Sciences 11 655
[18] Yoo J J, Yu J, Song J Y and Yi Y 2011 Carbon 49 2659
[19] Musa A O, Akomolafe T and Carter M J 1998 Sol. Energy Mat. Sol. C. 51 305
[20] Zhang H, Goodner D M, Bedzyk M J, Marks T J and Chang R P H 2004 Chem. Phys. Lett. 395 296
[21] Shanid N A M and Khadar M A 2008 Thin Solid Films 516 6245
[22] Zhang X, Wang G, Zhang W, Wei Y and Fang B 2009 Biosensors and Bioelectronics 24 3395
[23] Karimov Kh S, Saleem M, Tahir M M, Khan T A and Khan A 2010 Physica E 43 547
[24] Croft A, Davison R and Hargreaves M 1993 Engineering Mathematics. A Modern Foundation for Electronic, Electrical and Control Engineers (London: Addison-Wesley)
[25] Brabec C J, Dyakonov V, Parisi J and Sariciftci N S 2003 Organic Photovoltaics. Concepts and Realization (Heidelberg: Springer)
[26] Bottger H and Bryksin V V 1985 Hopping Conductions in Solids (Berlin: Akademie)
[27] Karimov Kh S, Chani M T S and Khalid F A 2011 it Physica E 43 1701
[28] Brutting W Physics of Organic Semiconductors 2005 (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA)
[29] Neamen D A 1992 Semiconductor Physics and Devices, Basic Principles (New York: Richard D. Irwin, Inc)
[30] Irvine R G 1994 Operational Amplifiers Characteristics and Applications (3rd Edn.) (Englewood Cliffs: Prentice Hall)
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[7] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[8] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[9] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[10] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[11] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[12] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[13] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
No Suggested Reading articles found!