Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 088502    DOI: 10.1088/1674-1056/20/8/088502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Highly efficient polymer phosphorescent light-emitting devices based on a new polyfluorene derivative as host

Wang Bao-Zheng(王保争)a), Liu Jie(刘杰) a), Wu Hong-Bin(吴宏滨)a)b), Zhang Bin(张斌)a), Wen Shang-Sheng(文尚胜) a)b)† , and Yang Wei(杨伟)a)b)
a Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China; State Key Laboratory of Physics and Chemistry of Luminescence, South China University of Technology, Guangzhou 510640, China
Abstract  Several highly efficient iridium-complex polymer light-emitting devices (PLEDs) are fabricated, with a newly synthesized blue conjugated polymer, poly[(9,9-bis(4-(2-ethylhexyloxy)phenyl)-fluorene)-co-(3,7-dibenziothiene-S,S-dioxide15)] (PPF-3,7SO15), chosen as host. High luminous efficiencies of 7.4 cd·A-1 and 27.4 cd·A-1 are achieved in red and green PLEDs, respectively, by optimizing the doping concentrations of red phosphorescent dye iridium bis(1-phenylisoquinoline) (acetylacetonate) (Ir(piq)) and green phosphorescent dye iridium tris(2-(4-tolyl)pyridinato-N, C2') (Ir(mppy)3). Furthermore, highly efficient white PLEDs (WPLEDs) with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.35, 0.38) are successfully produced by carefully controlling the doping concentration of the iridium complex. The obtained WPLEDs show maximal efficiencies of 14.4 cd·A-1 and 10.1 lm·W-1, which are comparable to those of incandescent bulbs. Moreover, the electroluminescent spectrum of the white device with an initial luminance of about 1000 cd·m-2 is stable, subject to constant applied current stress, indicating that good device stability can be obtained in this system.
Keywords:  phosphorescent      polymer light-emitting devices      host      white  
Received:  13 March 2011      Revised:  25 April 2011      Accepted manuscript online: 
PACS:  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  78.55.Kz (Solid organic materials)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB623602) and the National Natural Science Foundation of China (Grant No. U0634003).

Cite this article: 

Wang Bao-Zheng(王保争), Liu Jie(刘杰), Wu Hong-Bin(吴宏滨), Zhang Bin(张斌), Wen Shang-Sheng(文尚胜), and Yang Wei(杨伟) Highly efficient polymer phosphorescent light-emitting devices based on a new polyfluorene derivative as host 2011 Chin. Phys. B 20 088502

[1] Kido J, Kimura M and Nagai K 1995 Science 267 1332
[2] Guo F W and Ma D G 2005 Appl. Phys. Lett. 87 173510
[3] Dai G Z, Li H J, Pan Y Z, Dai X Y and Xie Q 2005 Chin. Phys. B 14 2590
[4] Chen F P, Xu B, Zhao Z J, Tian W J and Lü P 2010 Chin. Phys. B 19 037801
[5] Zhang W, Yu J S, Huang J, Jiang Y D, Zhang Q and Cao K L 2010 Chin. Phys. B 19 047802
[6] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151
[7] Ma Y G, Zhang H Y, Shen J C and Che C M 1998 Synth. Met. 94 245
[8] Zhang Y, Huang F, Chi Y and Jen A K Y 2008 Adv. Mater. 20 1565
[9] Wu H B, Zou J H, Liu F, Mikhailovsky A, Bazan G C, Yang W and Cao Y 2008 Adv. Mater. 20 696
[10] Chen F C, Chien S C and Chen Y S 2009 Appl. Phys. Lett. 94 043306
[11] Wu H B, Zhou G J, Zou J H, Ho C L, Wong W Y, Yang W, Peng J B and Cao Y 2009 Adv. Mater. 21 1
[12] Niu Q L, Zhang Y and Fan G H 2009 Acta Phys. Sin. 58 8630 (in Chinese)
[13] Jiang C, Yang W, Peng J, Xiao S and Cao Y 2004 Adv. Mater. 16 537
[14] Chen Z, Jiang C Y, Niu Q L, Peng J B and Cao Y 2008 Org. Electron. 9 1002
[15] Li A Y, Li Y Y, Cai W Z, Zhou G J, Chen Z, Wu H B, Wong W Y, Yang W, Peng J B and Cao Y 2010 Org. Electron. 11 529
[16] Huang J, Hou W J, Li J H, Li G and Yang Y 2006 Appl. Phys. Lett. 89 133509
[17] Gong X, Ma W, Bazan J C, Moses D and Heeger A J 2004 Adv. Mater. 16 615
[18] Xu Y H, Peng J B, Jiang J X, Xu W, Yang W and Cao Y 2005 Appl. Phys. Lett. 87 193502
[19] Liu J, Zou J H, Yang W, Wu H B, Li C, Zhang B, Peng J B and Cao Y 2008 Chem. Mater. 20 4499
[20] Lane P A, Palilis L C, O'Brien D F, Giebeler C, Gadby A J, Lidzey D G, Campbell A J, Blau W and Bradley D D C 2001 Phys. Rev. B 63 235206
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[7] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[8] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[9] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[10] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[11] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[12] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[13] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[14] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[15] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
No Suggested Reading articles found!