Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087201    DOI: 10.1088/1674-1056/20/8/087201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 ≤ x ≤ 0.25)

Xiao Xing-Xing, Xie Wen-Jie, Tang Xin-Feng, Zhang Qing-Jie
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  With good electrical properties and an inherently complex crystal structure, Cu2-xSe is a potential “phonon glass electron crystal” thermoelectric material that has previously not attracted much interest. In this study, Cu2-xSe (0 ≤ x ≤ 0.25) compounds were synthesized by a melting-quenching method, and then sintered by spark plasma sintering to obtain bulk material. The effect of Cu content on the phase transition and thermoelectric properties of Cu2-xSe were investigated in the temperature range of 300 K—750 K. The results of X-ray diffraction at room temperature show that Cu2-xSe compounds possess a cubic structure with a space group of Fm3m (#225) when 0.15 < x le 0.25, whereas they adopt a composite of monoclinic and cubic phases when 0 ≤ x ≤ 0.15. The thermoelectric property measurements show that with increasing Cu content, the electrical conductivity decreases, the Seebeck coefficient increases and the thermal conductivity decreases. Due to the relatively good power factor and low thermal conductivity, the nearly stoichiometric Cu2Se compound achieves the highest ZT of 0.38 at 750 K. It is expected that the thermoelectric performance can be further optimized by doping appropriate elements and/or via a nanostructuring approach.
Keywords:  thermoelectric properties      copper selenide      phase transition  
Received:  17 February 2011      Revised:  21 March 2011      Accepted manuscript online: 
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fc (Electric and thermal conductivity)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB607501) and the National Natural Science Foundation of China (Grant Nos. 50731006 and 50672118) along with 111 Project (Grant No. B07040).

Cite this article: 

Xiao Xing-Xing, Xie Wen-Jie, Tang Xin-Feng, Zhang Qing-Jie Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 ≤ x ≤ 0.25) 2011 Chin. Phys. B 20 087201

[1] Tritt T M, Bottner H and Chen L D 2008 MRS Bull. 33 366
[2] Deng S K, Tang X F and Tang R S 2009 Chin. Phys. B 18 3084
[3] Xie W J, Tang X F and Zhang Q J 2007 Chin. Phys. 16 3549
[4] Liu W S, Zhang B P, Li J F and Liu J 2006 Acta Phys. Sin. 55 645 (in Chinese)
[5] Shi X, Chen L D, Bai S Q and Tang X F 2004 Acta Phys. Sin. 53 1469 (in Chinese)
[6] Haynes W M 2006 CRC Handbook of Chemistry and Physics 87th edn. (Boca Raton: Taylor & Francis)
[7] Vaqueiro P and Powell A V 2010 J. Mater. Chem. 20 9577
[8] Hergert F, Jost S, Hock R and Purwins M 2006 J. Solid State Chem. 179 2394
[9] Glazov V M, Pashinkin A S and Fedorov V A 2000 Inorg. Mater. 36 775
[10] Chakrabarti D I and Laughlin D E 1981 Bull. Alloy Phase Diagrams 2 305
[11] Ohtani T and Shohno M 2004 J. Solid State Chem. 177 3886
[12] Abdullaev G B, Aliyarova Z A and Asadov G A 1967 Phys. Stat. 21 461
[13] Ishikawa T and Miyatani S 1977 J. Phys. Soc. Jpn. 42 159
[14] Akkad F El, Mansour B and Hendeya T 1981 Mater. Res. Bull. 16 535
[15] Danilkin S A 2009 J. Alloys Compd. 467 509
[16] Skomorokhov A N, Trots D M, Knapp M, Bickulova N N and Fuess H 2006 J. Alloys Compd. 421 64
[17] Ohtani T, Tachibana Y, Ogura J, Miyake T, Okada Y and Yokota Y 1998 J. Alloys Compd. 279 136
[18] Machado K D, deLime J C, Grandi T A, Campos C E M, Maurmann C E, Gasperini A A M, Souza S M and Pimenta A F 2004 Acta Cryst. B 60 282
[19] Junod P 1959 Helv. Phys. Acta 32 567
[20] Okamoto K 1971 Jpn. J. Appl. Phys. 10 508
[21] Wu T, Jiang W, Li X Y, Zhou Y F and Chen L D 2007 J. Appl. Phys. 102 103705
[22] Deng S K, Tang X F and Zhang Q J 2007 J. Appl. Phys. 102 043702
[23] Deng S K, Tang X F and Zhang Q J 2008 J. Appl. Phys. 103 073503
[24] Deng S K, Tang X F, Yang P Z and Li M 2009 J. Mater. Sci. 44 939
[25] Vaqueiro P and Powell A V 2010 J. Mater. Chem. 20 9577
[26] Tonejc A, Ogorelec Z and Mestnik B 1975 J. Appl. Cryst. 8 375
[27] Mansour B A 1993 Phys. Stat. Sol. (a) 136 153
[28] Yamamoto K and Kashida S 1991 J. Solid State Chem. 93 202
[29] Oliveria M, McMullan R K and Wuensch B J 1988 Solid State Ionics 28—30 1332
[30] Sakuma T, Aoyama T, Takahashi H, Shimojo Y and Morii Y 1989 Physica B 213—214 399
[31] Danilkin S A, Skomorokhov A N, Hoser A, Fuess H, Rajevac V and Bickulova N N 2003 J. Alloys Compd. 361 57
[1] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[2] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[3] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[4] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[5] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[6] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[7] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[8] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[9] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[10] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[11] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[12] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[13] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[14] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[15] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
No Suggested Reading articles found!