Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087201    DOI: 10.1088/1674-1056/20/8/087201

Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 ≤ x ≤ 0.25)

Xiao Xing-Xing, Xie Wen-Jie, Tang Xin-Feng, Zhang Qing-Jie
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  With good electrical properties and an inherently complex crystal structure, Cu2-xSe is a potential “phonon glass electron crystal” thermoelectric material that has previously not attracted much interest. In this study, Cu2-xSe (0 ≤ x ≤ 0.25) compounds were synthesized by a melting-quenching method, and then sintered by spark plasma sintering to obtain bulk material. The effect of Cu content on the phase transition and thermoelectric properties of Cu2-xSe were investigated in the temperature range of 300 K—750 K. The results of X-ray diffraction at room temperature show that Cu2-xSe compounds possess a cubic structure with a space group of Fm3m (#225) when 0.15 < x le 0.25, whereas they adopt a composite of monoclinic and cubic phases when 0 ≤ x ≤ 0.15. The thermoelectric property measurements show that with increasing Cu content, the electrical conductivity decreases, the Seebeck coefficient increases and the thermal conductivity decreases. Due to the relatively good power factor and low thermal conductivity, the nearly stoichiometric Cu2Se compound achieves the highest ZT of 0.38 at 750 K. It is expected that the thermoelectric performance can be further optimized by doping appropriate elements and/or via a nanostructuring approach.
Keywords:  thermoelectric properties      copper selenide      phase transition     
Received:  17 February 2011      Published:  15 August 2011
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  74.25.fc (Electric and thermal conductivity)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB607501) and the National Natural Science Foundation of China (Grant Nos. 50731006 and 50672118) along with 111 Project (Grant No. B07040).

Cite this article: 

Xiao Xing-Xing, Xie Wen-Jie, Tang Xin-Feng, Zhang Qing-Jie Phase transition and high temperature thermoelectric properties of copper selenide Cu2-xSe (0 ≤ x ≤ 0.25) 2011 Chin. Phys. B 20 087201

[1] Tritt T M, Bottner H and Chen L D 2008 MRS Bull. 33 366
[2] Deng S K, Tang X F and Tang R S 2009 Chin. Phys. B 18 3084
[3] Xie W J, Tang X F and Zhang Q J 2007 Chin. Phys. 16 3549
[4] Liu W S, Zhang B P, Li J F and Liu J 2006 Acta Phys. Sin. 55 645 (in Chinese)
[5] Shi X, Chen L D, Bai S Q and Tang X F 2004 Acta Phys. Sin. 53 1469 (in Chinese)
[6] Haynes W M 2006 CRC Handbook of Chemistry and Physics 87th edn. (Boca Raton: Taylor & Francis)
[7] Vaqueiro P and Powell A V 2010 J. Mater. Chem. 20 9577
[8] Hergert F, Jost S, Hock R and Purwins M 2006 J. Solid State Chem. 179 2394
[9] Glazov V M, Pashinkin A S and Fedorov V A 2000 Inorg. Mater. 36 775
[10] Chakrabarti D I and Laughlin D E 1981 Bull. Alloy Phase Diagrams 2 305
[11] Ohtani T and Shohno M 2004 J. Solid State Chem. 177 3886
[12] Abdullaev G B, Aliyarova Z A and Asadov G A 1967 Phys. Stat. 21 461
[13] Ishikawa T and Miyatani S 1977 J. Phys. Soc. Jpn. 42 159
[14] Akkad F El, Mansour B and Hendeya T 1981 Mater. Res. Bull. 16 535
[15] Danilkin S A 2009 J. Alloys Compd. 467 509
[16] Skomorokhov A N, Trots D M, Knapp M, Bickulova N N and Fuess H 2006 J. Alloys Compd. 421 64
[17] Ohtani T, Tachibana Y, Ogura J, Miyake T, Okada Y and Yokota Y 1998 J. Alloys Compd. 279 136
[18] Machado K D, deLime J C, Grandi T A, Campos C E M, Maurmann C E, Gasperini A A M, Souza S M and Pimenta A F 2004 Acta Cryst. B 60 282
[19] Junod P 1959 Helv. Phys. Acta 32 567
[20] Okamoto K 1971 Jpn. J. Appl. Phys. 10 508
[21] Wu T, Jiang W, Li X Y, Zhou Y F and Chen L D 2007 J. Appl. Phys. 102 103705
[22] Deng S K, Tang X F and Zhang Q J 2007 J. Appl. Phys. 102 043702
[23] Deng S K, Tang X F and Zhang Q J 2008 J. Appl. Phys. 103 073503
[24] Deng S K, Tang X F, Yang P Z and Li M 2009 J. Mater. Sci. 44 939
[25] Vaqueiro P and Powell A V 2010 J. Mater. Chem. 20 9577
[26] Tonejc A, Ogorelec Z and Mestnik B 1975 J. Appl. Cryst. 8 375
[27] Mansour B A 1993 Phys. Stat. Sol. (a) 136 153
[28] Yamamoto K and Kashida S 1991 J. Solid State Chem. 93 202
[29] Oliveria M, McMullan R K and Wuensch B J 1988 Solid State Ionics 28—30 1332
[30] Sakuma T, Aoyama T, Takahashi H, Shimojo Y and Morii Y 1989 Physica B 213—214 399
[31] Danilkin S A, Skomorokhov A N, Hoser A, Fuess H, Rajevac V and Bickulova N N 2003 J. Alloys Compd. 361 57
[1] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[2] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[3] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[4] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[5] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[6] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[7] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[10] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[11] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[12] Distribution of a polymer chain between two interconnected spherical cavities
Chao Wang(王超), Ying-Cai Chen(陈英才), Shuang Zhang(张爽), Hang-Kai Qi(齐航凯), Meng-Bo Luo(罗孟波). Chin. Phys. B, 2020, 29(10): 108201.
[13] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵), Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(10): 108102.
[14] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[15] Structural transitions in NaNH2 via recrystallization under high pressure
Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(9): 096402.
No Suggested Reading articles found!