Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 082101    DOI: 10.1088/1674-1056/20/8/082101
NUCLEAR PHYSICS Prev   Next  

Ab-initio density functional theory study of a WO3 NH3-sensing mechanism

Hu Ming(胡明), Zhang Jie(张洁), Wang Wei-Dan(王巍丹), and Qin Yu-Xiang(秦玉香)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique. The band structures and electronic density states of WO3 bulk are investigated. The surface energies of different WO3 surfaces are compared and then the (002) surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments. Three adsorption sites are considered. According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c, the NH3 sensing mechanism is obtained.
Keywords:  WO3      density functional theory      NH3 sensing      density of state  
Received:  06 October 2010      Revised:  13 April 2011      Accepted manuscript online: 
PACS:  21.60.De (Ab initio methods)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60771019 and 60801018), Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300), Tianjin Natural Science Foundation, China (Grant No. 09JCYBJC01100), and the New Teacher Foundation of Ministry of Education, China (Grant No. 200800561109).

Cite this article: 

Hu Ming(胡明), Zhang Jie(张洁), Wang Wei-Dan(王巍丹), and Qin Yu-Xiang(秦玉香) Ab-initio density functional theory study of a WO3 NH3-sensing mechanism 2011 Chin. Phys. B 20 082101

[1] An W, Wu X J and Zeng X C 2008 J. Phys. Chem. C 112 5747
[2] Ma H L, Fan D W and Niu X S 2010 Chin. Phys. B 19 076102
[3] Hu X L, Li G S and Yu J C 2010 Am. Chem. Soc. 26 3031
[4] Chen L Y, He Z S, Yan T, Bai S L, Chen A F and Liu C C 2005 Progress in Natural Science 15 669
[5] Dai C L and Liu M C 2007 Jpn. J. Appl. Phys. 46 843
[6] Liu Z F, Yamazaki T, Shen Y B, Kikuta T and Nakatani N 2007 Sensors and Actuator B 128 173
[7] Morazzoni F, Scotti R, Origoni L, D'Arienzo M, Jimenez I, Cornet A and Morante J R 2007 Catalysis Today 126 169
[8] Yuan Q Z, Zhao Y P, Li L M and Wang T H 2009 J. Phys. Chem. C 113 6107
[9] Levy M and Pagnier T 2007 Sensors and Actuators B 126 204
[10] Bittencourt C, Felten A, Espinosa E H, Ionescu R, Llobet E, Correig X and Pireaux J J 2006 Sensors and Actuators B 115 33
[11] Xie G Z, Yu J S, Chen X and Jiang Y D 2007 Sensors and Actuators B 123 909
[12] Hohenberg P and Kohn W 1964 J. Phys. Rev. B 136 864
[13] Kohn W and Sham L J 1965 J. Phys. Rev. 140 A1133
[14] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045.
[15] Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmataskaya E V and Nobes R H 2000 J. Quantum Chem. 77 895
[16] Kotochigova S, Levine Z H, Shirley E L, Stiles M D and Clark W C 1997 Phys. Rev. A 55 191
[17] Udachin K A, Ratcliffe C I and Ripmeester J A 2002 J. Supramolecular Chemistry 2 405
[18] Casassa S and Pisani C 1995 Phys. Rev. B 51 7805
[19] Polatoglou H M, Methfessel M and Scheffler M 1993 Phys. Rev. B 48 1877
[20] Jiang X S, Yan Y C, Yuan S M, Mi S, Niu Z G and Liang J Q 2010 Chin. Phys. B 19 107104
[21] Xu X L, Chen Z H, Li Y, Chen W K and Li J Q 2009 Surf. Sci. 603 653
[22] Bentmann H, Demkov A A, Gregory R, and Zollner S 2008 Phys. Rev. B 78 205302-1
[23] Ma S Y and Wang S Q 2008 Chin. Phys. B 17 3856
[24] Ying M J, Zhang P and Du X L 2009 Chin. Phys. B 18 275
[25] Xue Y B, Tang Z A and Wei G F 2007 Chinese Journal of Sensors and Actuators 20 2364 (in Chinese)
[26] Yang Y 2010 Chin. Phys. B 19 108201
[27] Xue Y B and Tang Z A 2009 Chem. J. Chin. University 30 583 (in Chinese)
[28] Sun F Y, Hu M, Sun P, Zhang J and Liu B 2010 Journal of Nanoscience and Nanotechnology 10 7739
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!