Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080303    DOI: 10.1088/1674-1056/20/8/080303
GENERAL Prev   Next  

Sudden death of entanglement of two atoms interacting with thermal fields

Luo Cheng-Li, Miao Long, Zheng Xiao-Lan, Chen Zi-Hong, Liao Chang-Geng
Department of Physics, Fuzhou University, Fuzhou 350002, China
Abstract  We investigate the entanglement dynamics of two initially entangled atoms each interacting with a thermal field. We show that the two entangled atoms become completely disentangled in a finite time and that the lost information cannot return to the atomic system when the mean photon number of the thermal field exceeds a critical value (3.3584), even though the whole system is lossless. Then we study how the detuning between the atomic transition frequency and the field frequency and the disparity between two coupling rates would affect the evolution of the entanglement of the atomic system.
Keywords:  detuning      entanglement sudden death      thermal field      asymmetric     
Received:  09 September 2010      Published:  15 August 2011
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974028), the Natural Science Foundation of Fujian Province of China (Grant No. 2009J06002), and the Funds from the State Key Laboratory Breeding Base of Photocatalysis.

Cite this article: 

Luo Cheng-Li, Miao Long, Zheng Xiao-Lan, Chen Zi-Hong, Liao Chang-Geng Sudden death of entanglement of two atoms interacting with thermal fields 2011 Chin. Phys. B 20 080303

[1] Imai H and Hayashi M 2006 Quantum Computation and Information (Berlin: Springer)
[2] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[3] Zheng S B 2005 Phys. Rev. Lett. 95 080502
[4] Cubitt T S, Verstraete F and Cirac J I 2006 Phys. Rev. A 71 052308
[5] Zheng S B and Guo G C 2006 Phys. Rev. A 73 032329
[6] Zheng S B 2010 Chin. Phys. B 19 044204
[7] Zheng S B 2010 Chin. Phys. B 19 064204
[8] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[9] Yu T and Eberly J H 2006 Opt. Commun. 264 393
[10] Y"onacc M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[11] Y"onacc M and Eberly J H 2008 Opt. Lett. 33 270
[12] Luo C L, Liao C G and Chen Z H 2010 Opt. Commun. 283 3168
[13] Kim M S, Lee J Y, Ahn D and Knight P L 2002 Phys. Rev. A 65 040101(R)
[14] Han F and Xia Y J 2009 Chin. Phys. B 18 5144
[15] Marek P, Lee J and Kim M S 2008 Phys. Rev. A 77 032302
[16] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
[17] Gong Y X, Zhang Y S, Dong Y L, Niu X L, Huang Y F and Guo G C 2008 Phys. Rev. A 78 042103
[18] Tolkunov D, Privman V and Aravind P K 2005 Phys. Rev. A 71 060308(R)
[19] Paz J P and Roncaglia A J 2008 Phys. Rev. Lett. 100 220401
[20] Cui H T, Li K and Yi X X 2007 Phys. Lett. A bf 365 44
[21] Man Z X, Xia Y J and An N B 2009 Eur. Phys. J. D 53 229
[22] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[23] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[24] Zheng S B 2007 Phys. Rev. A 75 032114
[25] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[26] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[27] Eberly J H, Narozhny N B and Sanchez-Mondragon J J 1980 Phys. Rev. Lett. 44 1323
[1] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[2] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[3] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[4] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[5] Doppler radial velocity detection based on Doppler asymmetric spatial heterodyne spectroscopy technique for absorption lines
Yin-Li Kuang(况银丽), Liang Fang(方亮), Xiang Peng(彭翔), Xin Cheng(程欣), Hui Zhang(张辉), En-Hai Liu(刘恩海). Chin. Phys. B, 2020, 29(2): 020701.
[6] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[7] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[8] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n→∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[9] Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy
Ya-Fei Zhang(张亚飞), Yu-Tao Feng(冯玉涛), Di Fu(傅頔), Peng-Chong Wang(王鹏冲), Jian Sun(孙剑), Qing-Lan Bai(白清兰). Chin. Phys. B, 2020, 29(10): 104204.
[10] Unidirectional plasmonic Bragg reflector based on longitudinally asymmetric nanostructures
Mingsong Chen(陈名松), Lulu Pan(潘璐璐), Yuanfu Lu(鲁远甫), Guangyuan Li(李光元). Chin. Phys. B, 2019, 28(7): 074208.
[11] Asymmetric structure of atomic above-threshold ionization spectrum in two-color elliptically polarized laser fields
Xu-Cong Zhou(周旭聪), Shang Shi(石尚), Fei Li(李飞), Yu-Jun Yang(杨玉军), Jing Chen(陈京), Qing-Tian Meng(孟庆田), Bing-Bing Wang(王兵兵). Chin. Phys. B, 2019, 28(10): 103201.
[12] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[13] Probing the structure of multi-center molecules with odd-even high harmonics
Ning Su(苏宁), Shujuan Yu(于术娟), Weiyan Li(李卫艳), Shiping Yang(杨世平), Yanjun Chen(陈彦军). Chin. Phys. B, 2018, 27(5): 054213.
[14] High mobility ultrathin ZnO p-n homojunction modulated by Zn0.85Mg0.15O quantum barriers
Jing-Jing Yang(杨景景), Qing-Qing Fang(方庆清), Wen-Han Du(杜文汉), Ke-Ke Zhang, Da-Shun Dong(董大舜). Chin. Phys. B, 2018, 27(3): 037804.
[15] Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces
Di-Chao Chen(陈帝超), Xing-Feng Zhu(朱兴凤), Qi Wei(魏琦), Da-Jian Wu(吴大建). Chin. Phys. B, 2018, 27(12): 124302.
No Suggested Reading articles found!