Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 080303    DOI: 10.1088/1674-1056/20/8/080303
GENERAL Prev   Next  

Sudden death of entanglement of two atoms interacting with thermal fields

Luo Cheng-Li(罗成立), Miao Long(缪龙), Zheng Xiao-Lan(郑小兰), Chen Zi-Hong(陈子翃), and Liao Chang-Geng(廖长庚)
Department of Physics, Fuzhou University, Fuzhou 350002, China
Abstract  We investigate the entanglement dynamics of two initially entangled atoms each interacting with a thermal field. We show that the two entangled atoms become completely disentangled in a finite time and that the lost information cannot return to the atomic system when the mean photon number of the thermal field exceeds a critical value (3.3584), even though the whole system is lossless. Then we study how the detuning between the atomic transition frequency and the field frequency and the disparity between two coupling rates would affect the evolution of the entanglement of the atomic system.
Keywords:  entanglement sudden death      thermal field      asymmetric      detuning  
Received:  09 September 2010      Revised:  02 March 2011      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974028), the Natural Science Foundation of Fujian Province of China (Grant No. 2009J06002), and the Funds from the State Key Laboratory Breeding Base of Photocatalysis.

Cite this article: 

Luo Cheng-Li(罗成立), Miao Long(缪龙), Zheng Xiao-Lan(郑小兰), Chen Zi-Hong(陈子翃), and Liao Chang-Geng(廖长庚) Sudden death of entanglement of two atoms interacting with thermal fields 2011 Chin. Phys. B 20 080303

[1] Imai H and Hayashi M 2006 Quantum Computation and Information (Berlin: Springer)
[2] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[3] Zheng S B 2005 Phys. Rev. Lett. 95 080502
[4] Cubitt T S, Verstraete F and Cirac J I 2006 Phys. Rev. A 71 052308
[5] Zheng S B and Guo G C 2006 Phys. Rev. A 73 032329
[6] Zheng S B 2010 Chin. Phys. B 19 044204
[7] Zheng S B 2010 Chin. Phys. B 19 064204
[8] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[9] Yu T and Eberly J H 2006 Opt. Commun. 264 393
[10] Y"onacc M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[11] Y"onacc M and Eberly J H 2008 Opt. Lett. 33 270
[12] Luo C L, Liao C G and Chen Z H 2010 Opt. Commun. 283 3168
[13] Kim M S, Lee J Y, Ahn D and Knight P L 2002 Phys. Rev. A 65 040101(R)
[14] Han F and Xia Y J 2009 Chin. Phys. B 18 5144
[15] Marek P, Lee J and Kim M S 2008 Phys. Rev. A 77 032302
[16] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
[17] Gong Y X, Zhang Y S, Dong Y L, Niu X L, Huang Y F and Guo G C 2008 Phys. Rev. A 78 042103
[18] Tolkunov D, Privman V and Aravind P K 2005 Phys. Rev. A 71 060308(R)
[19] Paz J P and Roncaglia A J 2008 Phys. Rev. Lett. 100 220401
[20] Cui H T, Li K and Yi X X 2007 Phys. Lett. A bf 365 44
[21] Man Z X, Xia Y J and An N B 2009 Eur. Phys. J. D 53 229
[22] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[23] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[24] Zheng S B 2007 Phys. Rev. A 75 032114
[25] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[26] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[27] Eberly J H, Narozhny N B and Sanchez-Mondragon J J 1980 Phys. Rev. Lett. 44 1323
[1] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[4] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[5] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Improving the spectral purity of single photons by a single-interferometer-coupled microring
Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(3): 034210.
[8] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[9] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
[10] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[11] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[12] Degenerate asymmetric quantum concatenated codes for correcting biased quantum errors
Ji-Hao Fan(樊继豪), Jun Li(李骏), Han-Wu Chen(陈汉武), and Wen-Jie Liu(刘文杰). Chin. Phys. B, 2021, 30(12): 120302.
[13] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[14] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[15] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
No Suggested Reading articles found!