Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047501    DOI: 10.1088/1674-1056/20/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonequilibrium dynamics in two-dimensional Ising spin glass

Zhang Kai-Cheng(张开成)a) and Zhu Yan(朱岩)b)
a Department of Physics, Bohai University, Jinzhou 121013, Liaoning Province, China; b Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  This paper investigates the nonequilibrium dynamics of two-dimensional Ising spin glass by dynamical Monte Carlo simulations. A new method is developed to quantitatively measure the age of domain growth. Using this method it investigates how temperature shift affects the effective age of domain growth. It finds that the T-shift dependence of the effective age follows the prediction of the droplet model quite well. It also investigates the overlap length between the spin glass states as well as the correlated flips of spins, which are not consistent with the theoretical predictions. The possible reasons are discussed.
Keywords:  nonequilibrium      effective age      site-overlap      droplet model  
Received:  29 July 2010      Revised:  24 October 2010      Accepted manuscript online: 
PACS:  75.10.Hk (Classical spin models)  
  75.90.+w (Other topics in magnetic properties and materials)  

Cite this article: 

Zhang Kai-Cheng(张开成) and Zhu Yan(朱岩) Nonequilibrium dynamics in two-dimensional Ising spin glass 2011 Chin. Phys. B 20 047501

[1] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[2] Quilliam J A, Meng S, Mugford C G A and Kycia J B 2008 Phys. Rev. Lett. 101 187204
[3] Santoro G E, Martonak R, Tosatti E and Car R 2002 Science 295 2424
[4] Jorg T and Katzgraber H G 2008 Phys. Rev. Lett. 101 197205
[5] Yan S L and Zhu H X 2006 Chin. Phys. 15 3026
[6] Sherrington D and Kirkpatric S 1975 Phys. Rev. Lett. 35 1792
[7] Zhang K C 2009 Acta Phys. Sin. 58 5673 (in Chinese)
[8] Parisi G 1980 J. Phys. A 13 1101
[9] de Almeida J R L and Thouless D J 1977 J. Phys. A 11 983
[10] Katzgraber H G and Young A P 2005 Phys. Rev. B 72 184416
[11] Katzgraber H G, Larson D and Young A P 2009 Phys. Rev. Lett. 102 177205
[12] Edwards S F and Anderson P W 1975 J. Phys. F 5 965
[13] Ballesteros H G, Cruz A, Fernandez L A, Martin-Mayor V, Pech J, Ruiz-Lorenzo J J, Tarancon A, Tellez P, Ullod C L and Ungil C 2000 Phys. Rev. B 62 14237
[14] Kawamura H 1992 Phys. Rev. Lett. 68 3785
[15] Hukushima K and Kawamura H 2005 Phys. Rev. B 72 144416
[16] Fisher D S and Huse D A 1988 Phys. Rev. B 38 373
[17] Fisher D S and Huse D A 1988 Phys. Rev. B 38 386
[18] Zhang K C and Song P Y 2010 Chin. Phys. B 19 097105
[19] Kisker J, Santen L, Schreckenberg M and Rieger H 1996 Phys. Rev. B 53 6418
[20] Berthier L and Bouchaud J P 2002 Phys. Rev. B 66 054404
[21] Houdayer J and Hartmann A K 2004 Phys. Rev. B 70 014418
[22] Mochizuki T, Masutomi R and Okamoto T 2008 Phys. Rev. Lett. 101 267204
[23] Nambu Y, Nakatsuji S, Maeno Y, Okudzeto E K and Chan J Y 2008 Phys. Rev. Lett. 101 207204
[24] Amoruso C, Hartmann A K, Hastings M B and Moore M A 2006 Phys. Rev. Lett. 97 267202
[25] Melchert O and Hartmann A K 2007 Phys. Rev. B 76 174411
[26] Shang Y M and Yao K L 1999 Chin. Phys. 8 52
[27] Glauber R J 1963 J. Math. Phys. 4 294
[28] Billoni O V, Cannas S A and Tamarit F A 2005 Phys. Rev. B 72 104407
[29] Rieger H, Steckemetz B and Schreckenberg M 1994 Europhys. Lett. 27 485
[30] Lundgren L, Svedlindh P, Nordblad P and Beckman O 1983 Phys. Rev. Lett. 51 911
[31] Jonsson P E, Yoshino H and Nordblad P 2002 Phys. Rev. Lett. 89 097201
[32] Leuzzi L, Parisi G, Ricci-Tersenghi F and Ruiz-Lorenzo J J 2008 Phys. Rev. Lett. 101 107203
[33] Carter A C, Bray A J and Moore M A 2002 Phys. Rev. Lett. 88 077201
[1] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[2] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[3] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[4] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[5] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[6] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[7] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[8] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[9] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[10] The landscape and flux of a minimum network motif, Wu Xing
Kun Zhang(张坤), Ashley Xia(夏月), and Jin Wang(汪劲). Chin. Phys. B, 2020, 29(12): 120504.
[11] Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2019, 28(6): 060303.
[12] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[13] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[14] Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect
Bao-Rui Huang(黄保瑞), Fu-Chun Zhang(张富春), Yan-Ning Yang(杨延宁), Zhi-Yong Zhang(张志勇), Wei-Guo Wang(王卫国). Chin. Phys. B, 2019, 28(10): 108503.
[15] Quench dynamics of ultracold atoms in one-dimensional optical lattices with artificial gauge fields
Xiaoming Cai(蔡小明). Chin. Phys. B, 2017, 26(8): 086701.
No Suggested Reading articles found!