Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 103601    DOI: 10.1088/1674-1056/20/10/103601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electronic structure and infrared spectrum of a WnC0,± (n=1–6) cluster

Guo Wen-Lua, Zhang Xiu-Rongb, Kang Zhang-Lib
a School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; b School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract  WnC0,± (n=1-6) clusters are investigated by using the density functional theory (DFT) at the B3LYP/LANL2DZ level. We find that the neutral, anionic and cationic ground state structures are similar within the same size, and constituted by substituting a C atom for one W atom in the structures of Wn+1 clusters. The natural bond orbital (NBO) charge analyses indicate that the direction of electron transfer is from the W atom to the 2p orbital of the C atom. In addition, the calculated infrared spectra of the WnC0,± (n=2-6) clusters manifest that the vibrational frequencies of neutral, anionic and cationic clusters are similar in a range of 80 cm-1-864 cm-1. The high frequency, strong peak modes are found to be an almost stretched deformation of the carbide atom. Finally, the polarizabilities of WnC0,± (n=1-6) clusters are also discussed.
Keywords:  WnC0      ± (n=1-6) clusters      electronic structure      infrared spectrum      density functional theory     
Received:  20 February 2011      Published:  15 October 2011
PACS:  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.40.Vz (Optical properties of clusters)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51072072).

Cite this article: 

Zhang Xiu-Rong, Kang Zhang-Li, Guo Wen-Lu Electronic structure and infrared spectrum of a WnC0,± (n=1–6) cluster 2011 Chin. Phys. B 20 103601

[1] Pol S V, Pol V G and Gedanken A 2006 Adv. Mater. 18 2023
[2] Keller N, Pietruszka B and Keller V 2006 Mater. Lett. 60 1774
[3] Zhao Z G and Miyauchi M 2008 Angew. Chem. Int. Ed. 47 7051
[4] Karre P S K, Acharya M, Knudsen W R and Bergstrom P L 2008 IEEE Sens. J. 8 797
[5] Kida T, Nishiyama A, Yuasa M, Shimanoe K and Yamazoe N 2009 Sensor. Actuat. B: Chem. 135 568
[6] Liang C, Ding L, Wang A, Ma Z and Qiu J 2009 Ind. Eng. Chem. Res. 48 3244
[7] Guo Z, Lu B, Jiang X and Zhao J J 2011 Acta Phys. Sin. 60 013601 (in Chinese)
[8] Gu J, Wang S Y and Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)
[9] Scharf T W, Romanes M C, Mahdak K C, Hwang J Y, Banerjee R, Evans R D and Doll G L 2008 Appl. Phys. Lett. 93 151909
[10] Abad M D, S'anchez-L'opez J C, Cusnir N and Sanjines R 2009 J. Appl. Phys. 105 033510
[11] Weidele H, Kreisle D, Recknagel E, Icking-Konert G S, Handschuh H, Gantefor G and Eberhardt W 1995 Chem. Phys. Lett. 237 425
[12] Zhang X R, Ding X L, Dai B and Yang J L 2005 J. Mol. Struct.: Theochem 757 113
[13] Zhang X R, Ding X L and Yang J L 2005 Int. J. Mod. Phys. B 19 2427
[14] Du J, Sun X, Meng D, Zhang P and Jiang G 2009 J. Chem. Phys. 131 044313
[15] Borin A C, Gobbo J P and Roos B O 2010 Chem. Phys. Lett. 490 24
[16] Sherrill C D and Piecuch P 2005 J. Chem. Phys. 122 124104
[17] Olga G and Leeor K 2007 J. Chem. Phys. A 111 2028
[18] Wang X R and Zheng H P 2009 Chin. Phys. B 18 1968
[19] Zhang C R, Chen H S, Song Y and Xu G J 2007 Chin. Phys. 16 2394
[20] Shane M S, Adam W S and Michael D M 2002 J. Chem. Phys. 116 993
[21] Fei Q, Liu S, Hui G and Yun Z 1999 Acta Chim. Phys. Sin. 12 525
[22] Li X, Liu S S, Chen W and Wang L 1999 J. Chem. Phys. 111 2464
[23] Rothgeb D, Hossain E and Jarrold C C 2008 J. Chem. Phys. 129 114304
[24] Samuel J, Peppernick K D, Gunaratne D and Castleman A W 2010 Chem. Phys. Lett. 489 1
[25] Balasubramanian K 2000 J. Chem. Phys. 112 7425
[26] Stevens F, Carmichael I, Callens F and Waroquier M 2006 J. Chem. Phys. A 110 4846
[27] Wang J, Sun X and Wu Z 2007 J. Cluster Sci. 18 333
[28] Zhang X R, Ding X L, Fu Q and Yang J L 2008 J. Mol. Struct.: Theochem 867 17
[29] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian 03 Revision B.04, Gaussian, Inc., Pittsburgh, PA
[30] Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270
[31] Zhang Z X, Cao B B and Duan H M 2008 J. Mol. Struct.: Theochem 863 22
[32] Gutsev G L and Bauschlicher C W 2003 Chem. Phys. 291 27
[33] Zhang X R, Liu X F and Kang Z L 2010 J. At. Mol. Phys. 27 869 (in Chinese)
[34] Zhang X R, Gao C H, Wu L Q and Tang H S 2010 Acta Phys. Sin. 59 5429 (in Chinese)
[35] Li X, Wang H, Yang X, Zhu Z and Tang Y 2007 J. Chem. Phys. 126 084504
[36] Karamanis P, Xenides D and Leszczynski J 2008 J. Chem. Phys. 129 094708
[1] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[2] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[3] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[7] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[8] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[9] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[10] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[11] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[12] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[13] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[14] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[15] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
No Suggested Reading articles found!