Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100304    DOI: 10.1088/1674-1056/20/10/100304
GENERAL Prev   Next  

General description of discriminating quantum operations

Zhang Ke-Jia(张可佳)a)b)†, Zhu Ping(朱萍)b), Gao Fei(高飞)a), Guo Fen-Zhuo(郭奋卓)b), Qin Su-Juan(秦素娟)a), and Wen Qiao-Yan(温巧燕)a)
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; b School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The discrimination of quantum operations plays a key role in quantum information and computation. Unlike discriminating quantum states, it has some special properties which can be carried out in practice. In this paper, we provide a general description of discriminating quantum operations. Concretely speaking, we describe the distinguishability between quantum operations using a measure called operator fidelity. It is shown that, employing the theory of operator fidelity, we can not only verify some previous results to discriminate unitary operations, but also exhibit a more general discrimination condition. We further apply our results to analysing the security of some quantum cryptographic protocols and discuss the realization of our method using well-developed quantum algorithms.
Keywords:  operator discrimination      quantum cryptograph      quantum computation  
Received:  25 March 2011      Revised:  26 May 2011      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60873191, 60903152, 61003286, 60821001, and 61070251), the Program for New Century Excellent Talents in University (Grant No. NCET-10-0260), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant Nos. 200800131016 and 20090005110010), the Beijing Nova Program (Grant No. 2008B51), the Key Project of the Chinese Ministry of Education (Grant No. 109014), the Beijing Natural Science Foundation (Grant No. 4112040), and the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01 and BUPT2011RC0505).

Cite this article: 

Zhang Ke-Jia(张可佳), Zhu Ping(朱萍), Gao Fei(高飞), Guo Fen-Zhuo(郭奋卓), Qin Su-Juan(秦素娟), and Wen Qiao-Yan(温巧燕) General description of discriminating quantum operations 2011 Chin. Phys. B 20 100304

[1] Qiu D and Li L 2010 Phys. Rev. A 81 042329
[2] Kleinmann M, Kampermann H and Bruss D 2010 Phys. Rev. A 81 020304
[3] Assalini A, Cariolaro G and Pierobon G 2010 Phys. Rev. A 81 012315
[4] Hayashi A, Hashimoto T and Horibe M 2008 Phys. Rev. A 78 012333
[5] Herzog U 2009 Phys. Rev. A 79 032323
[6] Kimura G, Miyadera T and Imai H 2009 Phys. Rev. A 79 062306
[7] Audenaert K M R, Calsamiglia J, Mu noz-Tapia R, Bagan E, Masanes L, Acin A and Verstraete F 2007 Phys. Rev. Lett. 98 160501
[8] Wootters W K 1981 Phys. Rev. D 23 357
[9] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[10] D'Ariano G M, LoPresti P and Paris M G A 2001 Phys. Rev. Lett. 87 270404
[11] Piani M and Watrous J 2009 Phys. Rev. Lett. 102 250501
[12] A quantum device is reusable, the input state for quantum devices can be chosen freely and there are many different schemes (in parallel or in sequential) to use a quantum device.
[13] Duan R Y, Feng Y and Ying M S 2007 Phys. Rev. Lett. 98 100503
[14] Ziman M 2008 Phys. Rev. A 77 062112
[15] Duan R Y, Feng Y and Ying M S 2008 Phys. Rev. Lett. 100 020503
[16] Ji Z F, Feng Y, Duan R Y and Ying M S 2006 Phys. Rev. Lett. 96 200401
[17] Wu X D and Duan R Y 2008 Phys. Rev. A 78 012303
[18] Chiribella G, D'Ariano G M and Perinotti P 2008 Phys. Rev. Lett. 101 060401
[19] Duan R Y, Feng Y and Ying M S 2009 Phys. Rev. Lett. 103 210501
[20] Childs A M, Preskill J and Renes J 2000 J. Mod. Opt. 47 155
[21] Ac'hin A 2001 Phys. Rev. Lett. 87 177901
[22] Laing A, Rudolph T and O'Brien J L 2009 Phys. Rev. Lett. 102 160502
[23] Zhang P, Peng L, Wang Z W, Ren X F, Liu B H, Huang Y F and Guo G C 2008 J. Phys. B: At. Mol. Opt. Phys. 41 195501
[24] Yao X W, Zeng B R, Liu Q, Mu X Y, Lin X C, Yang C, Pan J and Chen Z 2010 Acta Phys. Sin. 59 6837 (in Chinese)
[25] Giorda P and Zanardi P 2010 Phys. Rev. E 81 017203
[26] Wang X G, Sun Z and Wang Z D 2009 Phys. Rev. A 79 012105
[27] Lu X M, Sun Z, Wang X G and Zanardi P 2008 Phys. Rev. A 78 032309
[28] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[29] Wang X B 2005 Phys. Rev. Lett. 94 230503
[30] Ma X F, Fung C H F, Dupuis F, Chen K, Tamaki K and Lo H K 2006 Phys. Rev. A 74 032330
[31] Guo G P, Li C F, Shi B S, Li J and Guo G C 2001 Phys. Rev. A 64 042301
[32] Grosshans F 2005 Phys. Rev. Lett. 94 020504
[33] Cabello A 2000 Phys. Rev. A 61 052312
[34] Gao F, Guo F Z, Wen Q Y and Zhu F C 2006 Phys. Lett. A 349 53
[35] Zhang S, Wang J, Zhang Q and Tang Z J 2009 Acta Phys. Sin. 58 73 (in Chinese)
[36] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[37] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[38] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[39] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[40] Quan D X, Pei C X, Liu D and Zhao N 2010 Acta Phys. Sin. 59 2493 (in Chinese)
[41] Qin S J, Gao F, Wen Q Y and Zhu F C 2007 Phys. Rev. A 76 062324
[42] Qin S J, Gao F, Wen Q Y and Zhu F C 2009 Quantum Infor. Comput. 9 0765
[43] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[3] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[4] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[5] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[6] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[7] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[8] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[9] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[10] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[11] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[12] Quantum algorithm for a set of quantum 2SAT problems
Yanglin Hu(胡杨林), Zhelun Zhang(张哲伦), and Biao Wu(吴飙). Chin. Phys. B, 2021, 30(2): 020308.
[13] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[14] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[15] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
No Suggested Reading articles found!