Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080304    DOI: 10.1088/1674-1056/19/8/080304
GENERAL Prev   Next  

Interactions between defects and propagating hydrodynamic solitons

Pan Jun-Ting(潘军廷), Chen Wei-Zhong(陈伟中), and Zheng Lu-Jie(郑鹭杰)
The Key Laboratory of Modern Acoustics, Ministry of Education, and Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  This paper studies the hydrodynamic solitons propagating along a long trough with a defective bed. The slight deviation from the plane in the bed serves as the depth defects. Based on the perturbation method, it finds that the free surface wave is governed by a Korteweg-de Vries (KdV) equation with a defect term (KdVD). The numerical calculations show that, for a single-convexity localized defect, the propagating soliton is decelerated as it comes into the defect region, and it is accelerated back to its initial velocity as it leaves, which has a dipole effect. As a result, its displacement is lagged in contrast to the uninfluenced one. And an up-step defect makes the propagating soliton decelerate simply. The opposite influence will occur for a single-concavity localized defect and a down-step one. The defect-induced influence on propagating hydrodynamic solitons depends on the polarity of defects, which agrees with that on non-propagating ones. However, the involved dipole effect of the single localized defect is not displayed in non-propagating cases.
Keywords:  propagating hydrodynamic soliton      defect      interaction  
Received:  12 November 2009      Revised:  10 December 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774072).

Cite this article: 

Pan Jun-Ting(潘军廷), Chen Wei-Zhong(陈伟中), and Zheng Lu-Jie(郑鹭杰) Interactions between defects and propagating hydrodynamic solitons 2010 Chin. Phys. B 19 080304

[1] Wu J R, Keolian R and Rudnick I 1984 Phys. Rev. Lett. 52 1421
[2] Denardo B, Wright W, Putterman S and Larraza A 1990 Phys. Rev. Lett. 64 1518
[3] Jiang D S and She W L 2007 Acta Phys. Sin. 56 245 (in Chinese)
[4] Cao L G, Lu D Q, Hu W, Yang P B, Zhu Y Q and Guo Q 2008 Acta Phys. Sin. 57 6365 (in Chinese)
[5] Song L J, Li L and Zhou G S 2007 Chin. Phys. 16 148
[6] Dai C Q and Zhou G Q 2007 Chin. Phys. 16 1201
[7] Zheng H J, Liu S L and Xu J P 2007 Chin. Phys. 16 2023
[8] Yang J R and Mao J J 2008 Chin. Phys. B 17 4337
[9] Peng J Z, Yang H and Tang Y 2009 Chin. Phys. B 18 2364
[10] Mei C C 1986 J. Fluid Mech. 162 53
[11] Wu T Y T 1987 J. Fluid Mech. 184 75
[12] Grimshaw R H J and Smyth N 1986 J. Fluid Mech. 169 429
[13] Kakutani T 1971 J. Phys. Soc. Jpn. 30 272
[14] Redekopp L G and You Z 1995 Phys. Rev. Lett. 74 5158
[15] Zhu Y 1998 Journal of Hydrodynamics Ser. A 13 272 (in Chinese)
[16] Yan J R and Tang Y 1996 Phys. Rev. E 54 6816
[17] Yan J R, Tang Y, Zhou G H and Chen Z H 1998 Phys. Rev. E 58 1064
[18] Yan J R, Ao S M and Yu H Y 2005 Chin. Phys. 14 28
[19] Wang D L, Yan X H, Tang Y, Ding J W and Cao J X 2001 Acta Phys. Sin. 50 1201 (in Chinese)
[20] Li H, Wang T J, Huang D X and Wang D N 2004 Chin. Phys. 13 1447
[21] Ding N and Guo Q 2009 Chin. Phys. B 18 4298
[22] Scharf R and Bishop A R 1991 Phys. Rev. A 43 6535
[23] Braun O M and Kivshar Y S 1991 Phys. Rev. B 43 1060
[24] Alexeeva N V, Barashenkov I V and Tsironis G P 2000 Phys. Rev. Lett. 84 3053
[25] Chen W Z, Hu B B and Zhang H 2002 Phys. Rev. B 65 134302
[26] Chen W Z, Zhu Y F and Lu L 2003 Phys. Rev. B 67 184301
[27] Xu H, Chen W Z and Zhu Y F 2007 Phys. Rev. B 75 224303
[28] Li H and Wang D N 2009 Chin. Phys. B 18 2659
[29] Zhu W L, Luo L, He Y J and Wang H Z 2009 Chin. Phys. B 18 4319
[30] Chen W Z, Lu L and Zhu Y F 2005 Phys. Rev. E 71 036622
[31] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1997 Numerical Recipes in C 2nd ed. (Cambridge: Cambridge University Press) pp. 714--722
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[4] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[5] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[6] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[7] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[8] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[9] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[10] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[11] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[12] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[13] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
No Suggested Reading articles found!