Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 070511    DOI: 10.1088/1674-1056/19/7/070511
GENERAL Prev   Next  

Outer synchronization between two different fractional-order general complex dynamical networks

Wu Xiang-Jun (武相军), Lu Hong-Tao (卢宏涛)
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order α can be chosen appropriately to adjust the synchronization effect effectively.
Keywords:  the fractional-order system      complex networks      synchronization      bidirectional coupling  
Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
  89.20.Hh (World Wide Web, Internet)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60873133) and the National High Technology Research and Development Program of China (Grant No. 2007AA01Z478).

Cite this article: 

Wu Xiang-Jun (武相军), Lu Hong-Tao (卢宏涛) Outer synchronization between two different fractional-order general complex dynamical networks 2010 Chin. Phys. B 19 070511

[1] Watts D J and Strogatz S H 1998 Nature (London) bf393 440
[2] Barabási A L and Albert R 1999 Science bf286 509
[3] Strogatz S H 2001 Nature (London) bf410 268
[4] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. bf86 3200
[5] Barab'asi A L, Jeong H, Néda Z, Ravasz E, Schubert A and Vicsek T 2002 Phys. A bf311 590
[6] Newman M E J 2003 SIAM Review bf45 167
[7] Pecora L M, Carrol T L and Johnson G A 1998 Chaos bf7 520
[8] Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives, and Applications (Singapore: World Scientific)
[9] Qiu F, Cui B T and Ji Y 2009 Chin. Phys. B bf18 5203
[10] Li Z K, Duan Z S and Chen G R 2009 Chin. Phys. B bf18 5228
[11] Boccaletti S, Latora V, Morento Y, Chavez M and Hwang D U 2006 Phys. Rep. bf424 175
[12] Zhou J, Xiang L and Liu Z 2007 Phys. A bf385 729
[13] Arenas A, Diaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. bf469 93
[14] Yu W, Chen G and Lü J 2009 Automatica bf45 429
[15] Guo W, Austin F, Chen S and Sun W 2009 Phys. Lett. A bf373 1565
[16] Chen M, Shang Y, Zhou C, Wu Y and Kurths J 2009 Chaos bf19 013105
[17] Montbri'o E, Kurths J and Blasius B 2004 Phys. Rev. E bf70 056125
[18] Li C P, Sun W G and Kurths J 2007 Phys. Rev. E bf76 046204
[19] Begon M, Townsend C and Harper J 1996 Ecology: Individuals, Populations and Communities (London: Blackwell Science)
[20] Hu M, Xu Z and Yang Y 2008 Phys. A bf387 3759
[21] Tang H, Chen L, Lu J and Tse C K 2008 Phys. A bf387 5623
[22] Lu X B and Qin B Z 2009 Phys. Lett. A bf373 3650
[23] Zheng S, Dong G and Bi Q 2009 Phys. Lett. A bf373 4255
[24] Huang H and Feng G 2009 Neural Networks bf22 869
[25] Sun M, Zeng C, Tao Y and Tian L 2009 Phys. Lett. A bf373 3041
[26] Li C P, Xu X, Sun W G, Xu J and Kurths J 2009 Chaos bf19 013106
[27] Wu X, Zheng W and Zhou J 2009 Chaos bf19 013109
[28] Tang Y, Wang Z and Fang J 2009 Chaos bf19 013112
[29] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[30] Hifer R 2001 Applications of Fractional Calculus in Physics (New Jersey: World Scientific)
[31] Koeller R C 1984 J. Appl. Mech. bf51 299
[32] Sun H H, Abdelwahad A A and Onaral B 1984 IEEE Trans. Automat. Contr. bf29 441
[33] Laskin N 2000 Phys. A bf287 482
[34] Kunsezov D, Bulagc A and Dang G D 1999 Phys. Rev. Lett. bf82 1136
[35] Li C G and Chen G 2004 Phys. A bf341 55
[36] Li C and Chen G 2004 Chaos, Solitons and Fractals bf22 549
[37] Arena P, Fortuna L and Porto D 2000 Phys. Rev. E bf61 776
[38] Caputo M 1967 Geophys. J. R. Astron. Soc. bf13 529
[38] Xia Y W, Pananakakis G and Kamarinos Y G 1990 J. Comput. Phys. bf91 478
[39] Diethelm K 1997 Trans. Numer. Anal. bf5 1
[40] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. bf29 3
[41] Diethelm K and Ford N J 2002 J. Math. Anal. Appl. bf265 229
[42] Diethelm K, Ford N J and Freed A D 2004 Numer. Algorithms bf36 31
[43] Matignon D 1996 IMACS SMC Proceedings pp963--968, Lille, France
[44] Ma J H and Chen Y S 2001 Appl. Math. Mech. bf22 1240
[45] Chen W C 2008 Chaos, Solitons and Fractals bf36 1305
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[8] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[9] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[12] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[13] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[14] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[15] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
No Suggested Reading articles found!