Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 066102    DOI: 10.1088/1674-1056/19/6/066102

Synthesis and properties of Au-Fe3O4 and Ag-Fe3O4 heterodimeric nanoparticles

Ding Hao, Shen Cheng-Min, Hui Chao, Xu Zhi-Chuan, Li Chen, Tian Yuan, Shi Xue-Zhao, Gao Hong-Jun
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Monodisperse Au--Fe3O4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution. The size of Au and Fe3O4 particles can be controlled by changing the injection temperature. UV--Vis spectra show that the surface plasma resonance band of Au--Fe3O4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size. The as-prepared heterodimeric Au--Fe3O4 NPs exhibited superparamagnetic properties at room temperature. The Ag--Fe3O4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO3 as precursor instead of HAuCl4. It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.
Keywords:  heterodimeric structure      monodisperse      Au--Fe3O4 nanoparticles  
Received:  10 September 2009      Published:  15 June 2010
PACS:  81.16.-c (Methods of micro- and nanofabrication and processing)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  78.40.Ha (Other nonmetallic inorganics)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.22.Lp (Collective excitations)  
  75.20.Ck (Nonmetals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~60571045 and 50872147) and the National High-Tech. Research and Development Program of China (Grant No.~2007AA03Z035).

Cite this article: 

Ding Hao, Shen Cheng-Min, Hui Chao, Xu Zhi-Chuan, Li Chen, Tian Yuan, Shi Xue-Zhao, Gao Hong-Jun Synthesis and properties of Au-Fe3O4 and Ag-Fe3O4 heterodimeric nanoparticles 2010 Chin. Phys. B 19 066102

[1] Shevchenko E V, Talapin D V, Kotov N A, O'Brien S and Murray C B 2006 Nature 43 955
[2] Lu A H, Salabas E L and Schth F 2007 Angew. Chem. Int. Ed. 46 1222
[3] Xiao C W, Shen C M, Xu Z C, Yang T Z and Gao H J 2008 Chin. Phys. B 17 2066
[4] Shen C M, Yang T Z, Xiao C W, Zhang H R, Tian J F, Bao L H, Li C, Li J Q and Gao H J 2008 Chin. Phys. B 17 2191
[5] Wang K, Yang G, Long H, Li Y H, Dai N L and Lu P Y 2008 Acta Phys. Sin. 57 3862 (in Chinese)
[6] Shen C M, Hui C, Yang T Z, Xiao C W, Chen S T, Ding Hao and Gao H J 2008 Chin. Phys. Lett. 25 1479
[7] Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H and Gao H J 2008 Chem. Mater. 20 6939
[8] Xu Z C, Shen C M, Hou Y L, Gao H J and Sun S 2009 Chem. Mater. 21 1778
[9] He S T, Yao J N, Jiang P, Shi D X, Zhang H X, Xie S S, Pang S J and Gao H J 2001 Langmuir 17 1571
[10] Gu H W, Zheng R K, Zhang X X and Xu B 2004 J. Am. Chem. Soc. 126 5664
[11] Frey N A, Phan M H, Srikanth H, Srinath S, Wang C and Sun S 2009 J. Appl. Phys. 105 07B502
[12] Steiner D, Mokari T, Banin U and Millo O 2005 Phys. Rev. Lett . 95 056805
[13] Lin X M and Samia A S 2006 J. Magn. Magn. Mater. 305 100
[14] Cho S J, Jarrett B R, Louie A Y and Kauzlarich S M 2006 Nanotechnology 17 640
[15] Huang Y F, Huang K M and Chang H T 2006 J. Colloid Interf. Sci. 301 145
[16] Yu H, Chen M, Rice P M, Wang S X, White R L and Sun S 2005 Nano Lett. 5 379
[17] Gu H W, Yang Z M, Gao J H, Chang C K and Xu B 2005 J. Am. Chem. Soc. 127 34
[18] Zhang L, Dou Y H and Gu H C 2006 J. Colloid Interf. Sci. 297 660
[19] Li Y Q, Zhang Q, Nurmikko A V and Sun S 2005 Nano Lett . 5 1689
[20] Choi J S, Jun Y W, Yeon S I, Kim H C, Shin J S and Cheon J W 2006 J. Am. Chem. Soc. 128 15982
[21] Pellegrino T, Fiore A, Carlino E, Giannini C, Cozzoli P D, Ciccarella G, Respaud M, Palmirotta L, Cingolani R and Manna L 2006 J. Am. Chem. Soc. 128 6690
[22] Shi W L, Zeng H, Sahoo Y, Ohulchansky T Y, Ding Y, Wang Z L, Swihart M and Prasad P 2006 Nano Lett. 6 75
[23] Xu C J, Wang B D and Sun S 2009 J. Am. Chem. Soc. 131 4216
[24] Xu C J, Xie J, Ho D, Wang C, Kohler N, Walsh E G, Morgan J R, Chin Y E and Sun S 2008 Angew. Chem. Int. Ed. 47 173
[1] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
[2] Synthesis and characterization of β-Ga2O3@GaN nanowires
Shuang Wang(王爽), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Li-Ying Zhang(张丽颖), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Bin Liu(刘斌), Peng Chen(陈鹏), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(2): 028104.
[3] Fabrication of seeded substrates for layer transferrable silicon films
Ji-Zhou Li(李纪周), Wei Zhang(张伟), Jing-Yuan Yan(鄢靖源), Cong Wang(王聪), Hong-Fei Chen(陈宏飞), Xiao-Yuan Chen(陈小源), Dong-Fang Liu(刘东方). Chin. Phys. B, 2018, 27(8): 086802.
[4] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[5] Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications
Qianqing Jiang(姜倩晴), Wuxia Li(李无瑕), Chengchun Tang(唐成春), Yanchun Chang(常彦春), Tingting Hao(郝婷婷), Xinyu Pan(潘新宇), Haitao Ye(叶海涛), Junjie Li(李俊杰), Changzhi Gu(顾长志). Chin. Phys. B, 2016, 25(11): 118105.
[6] Characterization of CoPt nanowire fabricated by glancing angle deposition
Satoshi Kitai, Zhang Zheng-Jun, Shi Ji, Yoshio Nakamura. Chin. Phys. B, 2015, 24(5): 056201.
[7] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min, Wang Lian-Cheng, Xu Yao. Chin. Phys. B, 2014, 23(8): 088105.
[8] Synthesis of Au nanorods in a low pH solution via seed-media method
Ma Xiao, Feng Jin-Yang, You Fang-Fang, Ma Juan, Zhao Xiu-Jian, Wang Moo-Chin. Chin. Phys. B, 2014, 23(8): 087807.
[9] Colloidal monolayer self-assembly and its simulation via cellular automaton model
Wu Yi-Zhi, Chen Chen, Xu Xiao-Liang, Liu Yun-Xi, Shao Wei-Jia, Yin Nai-Qiang, Zhang Wen-Ting, Ke Jia-Xin, Fang Xiao-Tian. Chin. Phys. B, 2014, 23(8): 088703.
[10] Large-scale photonic crystals with inserted defects and their optical properties
Li Chao-Rong, Li Juan, Yang Hu, Zhao Yong-Qiang, Wu Yan, Dong Wen-Jun, Chen Ben-Yong. Chin. Phys. B, 2014, 23(8): 088114.
[11] Electrohydrodynamic direct-writing of conductor-insulator-conductor multi-layer interconnection
Zheng Gao-Feng, Pei Yan-Bo, Wang Xiang, Zheng Jian-Yi, Sun Dao-Heng. Chin. Phys. B, 2014, 23(6): 066102.
[12] Coulombic interaction in the colloidal oriented-attachment growth of tetragonal nanorods
Li Jun-Fan, Wen Ke-Chun, He Wei-Dong, Wang Xiao-Ning, Lü Wei-Qiang, Yan Peng-Fei, Song Yuan-Qiang, Lu Hong-Liang, Lin Xiao, Dickerson J. H.. Chin. Phys. B, 2014, 23(5): 056103.
[13] One-dimensional diffusion of vacancies on Sr/Si(100)-c(2×4) surface
Yang Jing-Jing, Du Wen-Han. Chin. Phys. B, 2013, 22(6): 066801.
[14] Enhancement of microwave absorption of nanocomposite BaFe12O19/α-Fe microfibers
Yang Xin-Chun, Liu Rui-Jiang, Shen Xiang-Qian, Song Fu-Zhan, Jing Mao-Xiang, Meng Xian-Feng. Chin. Phys. B, 2013, 22(5): 058101.
[15] Role of chelating agent in chemical and fluorescent properties of SnO2 nanoparticles
He Shao-Bo, Wang Shi-Fa, Ding Qing-Ping, Yuan Xiao-Dong, Zheng Wan-Guo, Xiang Xia, Li Zhi-Jie, Zu Xiao-Tao. Chin. Phys. B, 2013, 22(5): 058102.
No Suggested Reading articles found!