Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030515    DOI: 10.1088/1674-1056/19/3/030515
GENERAL Prev   Next  

Improvement on generalised synchronisation of chaotic systems

Zhu Hui-Bin(朱会宾)a),Qiu Fang(邱芳)a)b), and Cui Bao-Tong(崔宝同)a)
a College of Communications and Control Engineering, Jiangnan University, Wuxi 214122, China; b Department of Mathematics, Binzhou University, Binzhou 256603, China
Abstract  In this paper, the problem of generalised synchronisation of two different chaotic systems is investigated. Some less conservative conditions are derived using linear matrix inequality other than existing results. Furthermore, a simple adaptive control scheme is proposed to achieve the generalised synchronisation of chaotic systems. The proposed method is simple and easy to implement in practice and can be applied to secure communications. Numerical simulations are also given to demonstrate the effectiveness and feasibility of the theoretical analysis.
Keywords:  chaotic systems      generalised synchronisation      secure communication  
Received:  06 June 2009      Revised:  14 September 2009      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2007016).

Cite this article: 

Zhu Hui-Bin(朱会宾),Qiu Fang(邱芳), and Cui Bao-Tong(崔宝同) Improvement on generalised synchronisation of chaotic systems 2010 Chin. Phys. B 19 030515

[1] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University)
[2] Zhang S H and Shen K 2004 Chin. Phys. 13 1215
[3] Mu J, Tao C and Du G H 2003 Chin. Phys. 12 381
[4] Hu M F and Xu Z Y 2007 Chin. Phys. 16 3231
[5] Boccaletti S, Kurths J, Osipov G, Valladares D L andZhou C S 2002 Phys. Rep. 366 1
[6] Zhang J S and Xiao X C 2001 Acta Phys. Sin. 50 2121 (in Chinese)
[7] Rulkov N F, Vorontsov M A and Illing L 2002 Phys. Rev. Lett. 89 277905
[8] Schafer C, Rosenblum M G, Kurths J and Abel H 1998 Nature 392 239
[9] Landsman A S and Schwartz I B 2007 Phys. Rev. E 75 026201
[10] Xiao Y Z and Xu W 2007 Chin. Phys. 16 1597
[11] Wang Q Y, Lu Q S and Wang H X 2005 Chin. Phys. 14 189
[12] Xiao Y Z, Xu W, Li X C and Tang S F 2008 Chin. Phys. B 17 80
[13] Rulkov N F, Sushchik M M, Tsimring L S and Abarbanel H 1995 Phys. Rev. E51 980
[14] Chen Z, Lin W and Zhou J 2007 Chaos 17023106
[15] Rulkov N F and Lewis C T 2001 Phys. Rev. E 63 065204
[16] Meng J and Wang X Y 2008 Chaos 18 023108
[17] Li G H 2007 Chin. Phys. 16 2608
[18] Jia Z, Lu J A, Deng G M and Zhang Q J 2007 Chin. Phys. 16 1246
[19] Hramov A E and Koronovskii A A 2005 Phys. Rev. E 71 067201
[20] Hramov A E, Koronovskii A A and Moskalenko O I 2005 Europ.Lett. 72 901
[21] Li D and Zheng Z G 2008 Chin. Phys. B 17 4009
[22] Zhang H, Ma X K, Yang Yu and Xu C D 2005 Chin. Phys. 14 86
[23] Zhang R, Xu Z Y and He X M 2007 Chin. Phys. 16 1912
[24] Zhang S H and Shen K 2002 Chin. Phys. 11 894
[25] Zhang R X and Yang S P 2008 Chin. Phys. B 174073
[26] Yu S M, Ma Z G, Qiu S S, Peng S G and Lin Q H 2004 Chin. Phys. 13 317
[27] Zhou P and Cao Y X 2007 Chin. Phys. 16 2903
[28] Senthilkumar D V, Lakshmanan M and Kurths J 2006 Phys.Rev. E 74 035205
[29] Yang X L and Xu W 2008 Chin. Phys. B 17 2004
[30] Han F, Lu Q S, Wiercigroch M and Ji Q B 2009 Chin. Phys. B18 482
[31] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 784193
[32] Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
[33] Zhou C S and Kurths J 2002 Phys. Rev. Lett. 23 0602
[34] Hramova A E, Koronovskiia A A 2005 Physica D 206 252
[35] Zhu H B and Cui B T 2007 Chaos 17 043122
[36] Sun Z K, Xu W and Yang X L 2007 Chin. Phys. 16 3226
[37] Yang T and Chua L O 1997 IEEE Trans. Circ. Syst. I44 976
[38] Niu Y J, Xu W, Rong H W, Ma L and Feng J L 2009 Acta Phys.Sin. 58 2983 (in Chinese)
[39] Fradkov A L and Pogromsky A Y 1996 IEEE Trans. Circ. Syst. I43 907
[40] Hu J and Zhang Q J 2008 Chin. Phys. B 17 503
[41] Lou X Y and Cui B T 2008 Chin. Phys. B 17 520
[42] Gao B J and Lu J A 2007 Chin. Phys. 16 666
[43] Li C D, Liao X F and Huang T W 2007 Chaos 17 013103
[44] ? ochowski M 2000 Physica D 145 181
[45] Agiza H N and Yassen M T 2001 Phys. Lett. A 278 191
[46] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[47] Huang D B 2005 Phys. Rev. E 71 037203
[48] Hunt B R, Ott E and Yorke J A 1997 Phys. Rev. E 55 4029
[49] Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65
[50] van Wiggeren G D 1998 Phys. Rev. Lett. 81 3547
[51] Parlitz U, Kocarev L, Stojanovski T and Preckel H 1996 Phys. Rev. E 53 4351
[52] Zhan M, Wang X G, Gong X F, Wei G W and Lai C H 2003 Phys. Rev. E 68 036208
[53] Min L Q, Zhang X D and Chen G R 2005 Int. J. Bifurcation Chaos Appl. Sci.Eng. 15 119
[54] Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 76 1816
[55] Cui B T, Chen J and Lou X Y 2008 Chin. Phys. B171670
[56] Boccaletti S and Valladares1 D L 2000 Phys. Rev.E 62 7497
[1] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[2] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[3] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[4] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[5] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[6] Secure communication based on spatiotemporal chaos
Ren Hai-Peng (任海鹏), Bai Chao (白超). Chin. Phys. B, 2015, 24(8): 080503.
[7] A long-distance quantum key distribution scheme based on pre-detection of optical pulse with auxiliary state
Quan Dong-Xiao (权东晓), Zhu Chang-Hua (朱畅华), Liu Shi-Quan (刘世全), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(5): 050309.
[8] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[9] Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
Wang Rui (王蕊), Sun Hui (孙辉), Wang Jie-Zhi (王杰智), Wang Lu (王鲁), Wang Yan-Chao (王晏超). Chin. Phys. B, 2015, 24(2): 020501.
[10] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[11] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[12] Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof
Song Rui-Zhuo (宋睿卓), Xiao Wen-Dong (肖文栋), Sun Chang-Yin (孙长银), Wei Qing-Lai (魏庆来). Chin. Phys. B, 2013, 22(9): 090502.
[13] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[14] A novel study for impulsive synchronization of fractional-order chaotic systems
Liu Jin-Gui (刘金桂). Chin. Phys. B, 2013, 22(6): 060510.
[15] Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos
Zhang Fang-Fang (张芳芳), Liu Shu-Tang (刘树堂), Yu Wei-Yong (余卫勇). Chin. Phys. B, 2013, 22(12): 120505.
No Suggested Reading articles found!