Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100307    DOI: 10.1088/1674-1056/19/10/100307
GENERAL Prev   Next  

Pairwise thermal entanglement in a three-qubit Heisenberg XX model with a nonuniform magnetic field and Dzyaloshinski–Moriya interaction

Ren Jin-Zhong(任金忠)a), Shao Xiao-Qiang(邵晓强)b), Zhang Shou(张寿)a)†, and Yeon Kyu-Hwangc)
a Department of Physics, College of Science, Yanbian University, Yanji 133002, Jilin Province, China; b Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China; c BK21 Program Physics and Department of Physics, College of Natural Science, Chungbuk National University, Cheonju, Chungbuk 361-763, Republic of Korea
Abstract  Pairwise thermal entanglement in a three-qubit Heisenberg XX model is investigated when a nonuniform magnetic field and the Dzyaloshinski–Moriya interaction are included. We find that the nonuniform magnetic field and Dzyaloshinski–Moriya interaction are the more efficient control parameters for the increase of entanglement and critical temperature. For both the nearest neighbour sites and the next nearest neighbour sites, the magnetic field can induce entanglement to a certain extent and the Dzyaloshinski–Moriya interaction can enhance the entanglement to a stable value. The steady value of the nearest neighbour site entanglement C12 is larger than the next nearest neighbour site entanglement C13. An interesting phenomenon is that the entanglement curve of C12 appears a peak value when the Dzyaloshinski–Moriya interaction is considered in a nonuniform magnetic field.
Keywords:  thermal entanglement      nonuniform magnetic field      Dzyaloshinski–Moriya interaction      Heisenberg model  
Received:  26 January 2010      Revised:  14 April 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.30.Et (Exchange and superexchange interactions)  

Cite this article: 

Ren Jin-Zhong(任金忠), Shao Xiao-Qiang(邵晓强), Zhang Shou(张寿), and Yeon Kyu-Hwang Pairwise thermal entanglement in a three-qubit Heisenberg XX model with a nonuniform magnetic field and Dzyaloshinski–Moriya interaction 2010 Chin. Phys. B 19 100307

[1] Bennett C H, Brassard G, Grepeau C, Jozsa R, Peres A and Wootters W K 1993 emphPhys. Rev. Lett. 70 1895
[2] Bennett C H and Wiesener S J 1992 emphPhys. Rev. Lett. 69 2881
[3] Ekert A K 1991 emphPhys. Rev. Lett. 67 661
[4] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 emphPhys. Rev. A 73 022338
[5] Wang X G 2001 emphPhys. Rev. A 64 012313
[6] Sun Y, Chen Y G and Chen H 2003 emphPhys. Rev. A 68 044301
[7] Zhang G F and Li S S 2005 emphPhys. Rev. A 72 034302
[8] Zhou L, Song H S, Guo Y Q and Li C 2003 emphPhys. Rev. A 68 024301
[9] Liu R, Liang M L and Yuan B 2007 emphEuro. Phys. J. D 41 571
[10] Cao M and Zhu S Q 2005 emphPhys. Rev. A 71 034311
[11] Dzialoshinski I 1958 emphJ. Phys. Chem. Solids 4 241
[12] Moriya T 1960 emphPhys. Rev. Lett. 4 228
[13] Moriya T 1960 emphPhys. Rev. 120 91
[14] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 emphActa Phys. Sin. 57 2687 (in Chinese)
[15] Hu X M and Liu J M 2009 emphChin. Phys. B 18 411
[16] Li D C, Wang X P and Cao Z L 2008 emphJ. Phys.: emphCondens. Matter 20 325229
[17] Xie L J, Zhang D Y, Tang S Q, Zhan X G and Gao F 2009 emphChin. Phys. B 18 3203
[18] Hill S and Wootters W K 1997 emphPhys. Rev. Lett. 78 5022
[19] Wootters W K 1998 emphPhys. Rev. Lett. 80 2245 endfootnotesize
[1] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[2] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[3] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[4] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[5] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski†, Petar Mali, Slobodan Rado\v sevi\'c, Sonja Gombar, Milan Panti\'c, and Milica Pavkov-Hrvojevi\'c. Chin. Phys. B, 2020, 29(10): 107103.
[6] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[7] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[8] Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2017, 26(7): 070302.
[9] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui, Zhang Bing-Bing, Li Lei. Chin. Phys. B, 2015, 24(6): 060302.
[10] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie, Zhou Bin. Chin. Phys. B, 2015, 24(11): 110306.
[11] Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field
Li Lei, Yang Guo-Hui. Chin. Phys. B, 2014, 23(7): 070306.
[12] A thermal entangled quantum refrigerator based on a two-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction in an external magnetic field
Wang Hao, Wu Guo-Xing. Chin. Phys. B, 2013, 22(5): 050512.
[13] Entangled quantum heat engine based on two-qubit Heisenberg XY model
He Ji-Zhou(何济洲), He Xian(何弦), and Zheng Jie(郑洁) . Chin. Phys. B, 2012, 21(5): 050303.
[14] Entanglement dynamics of two qubits coupled by Heisenberg XY interaction under a nonuniform magnetic field in a spin bath
Zhou Feng-Xue(周凤雪), Zhang Li-Da(张理达), Qi Yi-Hong(祁义红), Niu Yue-Ping(钮月萍), Zhang Jing-Tao(张敬涛), and Gong Shang-Qing(龚尚庆) . Chin. Phys. B, 2011, 20(8): 080302.
[15] Thermal quantum discord in Heisenberg models with Dzyaloshinski–Moriya interaction
Wang Lin-Cheng(王林成), Yan Jun-Yan(闫俊彦), and Yi Xue-Xi(衣学喜) . Chin. Phys. B, 2011, 20(4): 040305.
No Suggested Reading articles found!