Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017302    DOI: 10.1088/1674-1056/19/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modified surface plasmonic waveguide formed by nanometric parallel lines

Xue Wen-Rui(薛文瑞), Guo Ya-Nan(郭亚楠), and Zhang Wen-Mei(张文梅)
College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
Abstract  In this paper, two kinds of modified surface plasmonic waveguides formed by nanometric parallel lines are proposed. The finite-difference frequency-domain method is used to study propagation properties of the fundamental mode supported by these surface plasmonic waveguide structures. Results show that the transverse magnetic field of the fundamental mode is mainly distributed in the face to face region formed by two rods. With the same geometrical parameters and the same working wavelength of 632.8 nm, in the case of rods with a triangular cross-section, the degree of localization of field is strong, i.e. the mode area is small, but the fraction of the modal power in the metal increases, so the effective index increases and the propagation length of the mode decreases. With the same geometrical parameters, relative to the case of a working wavelength of 632.8 nm, when working wavelength is large, the mode area of transverse magnetic field distribution is large, i.e. the degree of localization of field is weak, and the interaction of field and silver is weak too, then the effective index decreases, so the propagation length increases. The rounded radii of rods have a great influence on the performance of the surface plasmonic waveguides with rounded triangular cross-sections, but have little influence on the performance of surface plasmonic waveguides with rounded square cross-sections. Since the distribution of transverse magnetic field, effective index, propagation length and the mode area can be adjusted by the geometrical parameters, this kind of modified surface plasmonic waveguide can be applied to the field of photonic device integration and sensors.
Keywords:  surface plasmon polaritons      optical waveguides  
Received:  20 March 2009      Revised:  29 June 2009      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60771052) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2006011029).

Cite this article: 

Xue Wen-Rui(薛文瑞), Guo Ya-Nan(郭亚楠), and Zhang Wen-Mei(张文梅) Modified surface plasmonic waveguide formed by nanometric parallel lines 2010 Chin. Phys. B 19 017302

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Ozbay E 2006 Science 311 189
[3] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[4] Maier S A 2006 IEEE J. Sel. Top. Quant. 12 1671
[5] Takahara J, Yamagishi S, Taki H, Morimoto A and Kobayashi T 1997 Opt. Lett. 22 475
[6] Berini P 1999 Opt. Lett. 24] 1011
[7] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E and Requicha A G 2003 Nat. Mater. 2 229
[8] Pile D F P and Gramotnev D K 2004 Opt. Lett. 29 1069
[9] Wang B and Wang G P 2004 Appl. Phys. Lett. 85 3599
[10] Pile D F P, Ogawa T, Gramotnev D K, Matsuzaki Y, Vermon K C, Yamaguchi K, Okamoto T, Haraguchi M and Fukui M 2005 Appl. Phys. Lett. 87 261114
[11] Liu L, Han Z and He S 2005 Opt. Express 13] 6645
[12] Wang G P and Wang B 2006 J. Opt. Soc. Am. B 23 1660
[13] Chen L, Wang B and Wang G P 2006 Appl. Phys. Lett. 89 243120
[14] Jung J, Sondergaard T and Bozhevolnyi S I 2007 Phys. Rev. B 76 035434
[15] Lee I, Jung J, Park J, Kim H and Lee B 2007 Opt. Express 15 16596
[16] Wang B and Wang G P 2007 Appl. Phys. Lett. 90 013114
[17] Moreno E, Rodrigo S G, Bozhevolnyi S I, Moreno L M and Vidal F J G 2008 Phys. Rev. Lett. 100 023901
[18] Zhang H X, Gu Y and Gong Q H 2008 Chin. Phys. B 17 2567
[19] Guo J and Adato R 2008 Opt. Express 16 1232
[20] Arbel D and Orenstein M 2008 Opt. Express 16 3114
[21] Boltasseva A, Volkov V S, Nielsen R B, Moreno E, Rodrigo S G and Bozhevolnyi S I 2008 Opt. Express 16 5252
[22] Xue W R, Guo Y N, Li P and Zhang W M 2008 Opt. Express 16 10710
[23] Xue W R, Guo Y N and Zhang W M 2009 Chin. Phys. B 18 2529
[24] Guo Y N, Xue W R and Zhang W M 2009 Acta Phys. Sin. 58 4168 (in Chinese)
[25] Dintinger J and Martin J F 2009 Opt. Express 17 2364
[26] Zhu Z and Brown T G 2002 Opt. Express 10 853
[27] Guo S P, Wu F, Albin S, Tai H and Rogowski R S 2004 Opt. Express 12 3341
[28] Yu C P and Chang H C 2004 Opt. Express 12 6165
[29] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[30] Arnoldi W E 1951 Quart. Appl. Math. 9 17
[1] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[2] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[3] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[4] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[5] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[6] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[7] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[8] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[9] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[10] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[11] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[12] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[13] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[14] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[15] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
No Suggested Reading articles found!