Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 016201    DOI: 10.1088/1674-1056/19/1/016201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Prediction of a superhard material of ReN4 with a high shear modulus

Zhao Wen-Jie, Xu Hong-Bin, Wang Yuan-Xu
Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
Abstract  Using first-principles calculations, this paper systematically investigates the structural, elastic, and electronic properties of ReN4. The calculated positive eigenvalues of the elastic constant matrix show that the orthorhombic Pbca structure of ReN4 is elastically stable. The calculated band structure indicates that ReN4 is metallic. Compared with the synthesized superhard material WB4, it finds that ReN4 exhibits larger bulk and shear moduli as well as a smaller Poisson's ratio. In addition, the elastic constant c_44 of ReN4 is larger than all the known 5d transition metal nitrides and borides. This combination of properties makes it an ideal candidate for a superhard material.
Keywords:  shear modulus      hardness      bulk modulus      elastic properties  
Received:  02 April 2009      Revised:  05 May 2009      Published:  15 January 2010
PACS:  61.66.Fn (Inorganic compounds)  
  62.20.D- (Elasticity)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Ps (Other inorganic compounds)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2009HASTIT003), the Foundation of Science and Technology Department of Henan Province, China (Grant No. 082300410010), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.

Cite this article: 

Zhao Wen-Jie, Xu Hong-Bin, Wang Yuan-Xu Prediction of a superhard material of ReN4 with a high shear modulus 2010 Chin. Phys. B 19 016201

[1] Sun H, Jhi S H, Roundy D, Cohen M L and Louie S G 2001 Phys. Rev. B 64 094108
[2] Teter D M 1998 MRS Bull. 23 22
[3] Teter D M and Hemley R J 1996 Science 271 53
[4] Li Q, Wang M, Oganov A R, Cui T, Ma Y M and Zou G T 2009 J. Appl. Phys. 105 053514
[5] Wang S Y, Duan G Y, Qiu J H, Jia Y and Chen L Y 2006 Acta. Phys. Sin. 55 1979 (in Chinese)
[6] Liang Y C, Guo W L and Fang Z 2007 Acta. Phys. Sin. 56 4847 (in Chinese)
[7] Zhao W J and Wang Y X 2009 Chin. Phys. B 18 3934
[8] Wang Y X, Arai M, Sasaki T and Fan C Z 2007 Phys. Rev. B 75 104110
[9] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[10] Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H K 2006 Phys. Rev. Lett. 96 155501
[11] Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J, Cao X Q and Meng J 2006 Phys. Rev. B 74 224112
[12] Liang Y C and Zhang B 2007 Phys. Rev. B 76 132101
[13] Wang Y X 2007 Appl. Phys. Lett. 91 101904
[14] Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
[15] Wang Y X 2008 Phys. Stat. Sol. 2 126
[16] Gou H Y, Hou L, Zhang J W and Gao F M 2008 Appl. Phys. Lett. 92 241901
[17] Yu R, Zhan Q and Zhang X F 2006 Appl. Phys. Lett. 88 051913
[18] Gou H Y, Hou L, Zhang J W, Sun G F, Gao L H and Gao F M 2006 Appl. Phys. Lett. 89 141910
[19] Yu R and Zhang X F 2005 Phys. Rev. B 72 054103
[20] Guo X J, Xu B, He J L, Yu D L, Liu Z Y and Tian Y J 2008 Appl. Phys. Lett. 93 041904
[21] Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
[22] Zhang M, Wang M, Cui T, Ma Y M, Niu Y L and Zou G T 2008 J. Phys. Chem. Solids 69 2096
[23] Sung C M and Sung M 1996 Mater. Chem. Phys. 43 1
[24] Brazhkin V V, Lyapin A G and Hemley R J 2002 Phil. Mag. 82 231
[25] Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
[26] Wang M, Li Y W, Cui T, Ma Y M and Zou G T 2008 Appl. Phys. Lett. 93 101905
[27] Jeitschko W and Rühl R 1979 Acta Cryst. 35 1953
[28] Lukehart C M, Milne S B and Stock S R 1988 Chem. Mater. 10 903
[29] Kjekshus A 1971 Acta Chem. Scand. 25 411
[30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[31] Bl?chl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[33] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[36] Hill R 1952 Proc. Phys. Soc. London 65 349
[37] Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
[1] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[2] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬), Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), Si-Ning Yun(云斯宁). Chin. Phys. B, 2020, 29(10): 106102.
[3] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[4] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[5] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[6] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[7] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
[8] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
[9] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[10] The effects of combining alloying elements on the elastic properties of γ-Ni in Ni-based superalloy: High-throughput first-principles calculations
Baokun Lu(路宝坤), Chongyu Wang(王崇愚). Chin. Phys. B, 2018, 27(7): 077104.
[11] Compression behavior and phase transition of β-Si3N4 under high pressure
Hong-xia Gong(龚红霞), Zi-li Kou(寇自力), Cong Fan(樊聪), Hao Liang(梁浩), Qi-ming Wang(王齐明), Lei-lei Zhang(张雷雷), Fang Peng(彭放), Ming Yang(杨鸣), Xiao-lin Ni(倪小林), Jing Liu(刘景). Chin. Phys. B, 2018, 27(5): 056101.
[12] Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞). Chin. Phys. B, 2018, 27(5): 057101.
[13] The structure and elasticity of phase B silicates under high pressure by first principles simulation
Lei Liu(刘雷), Li Yi(易丽), Hong Liu(刘红), Ying Li(李营), Chun-Qiang Zhuang(庄春强), Long-Xing Yang(杨龙星), Gui-Ping Liu(刘桂平). Chin. Phys. B, 2018, 27(4): 047402.
[14] First principles study of ceramic materials (IVB group carbides) under ultrafast laser irradiation
Nan-Lin He(何南燐), Xin-Lu Cheng(程新路), Hong Zhang(张红), Gai-Qin Yan(闫改琴), Jia Zhang(张佳). Chin. Phys. B, 2018, 27(3): 036301.
[15] Elastic strain response in the modified phase-field-crystal model
Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟). Chin. Phys. B, 2017, 26(9): 090702.
No Suggested Reading articles found!