Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 016301    DOI: 10.1088/1674-1056/19/1/016301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phonon dispersion relations and soft modes of 4? carbon nanotubes

Miao Ling(缪灵)a)b), Liu Hui-Jun(刘惠军)a)†, Hu Yi(胡懿)a), Zhou Xiang(周详)a), Hu Cheng-Zheng(胡承正) a), and Shi Jing(石兢)a)
a Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices (Ministry of Education), Wuhan University, Wuhan 430072, China; b Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The phonon dispersion relations of three kinds of 4? carbon nanotubes are calculated by using the density functional perturbation theory. It is found that the frequencies of some phonon modes are very sensitive to the smearing width used in the calculations, and eventually become negative at low electronic temperature. Moreover, two kinds of soft modes are identified for the (5,0) tube which are quite different from those reported previously. Our results suggest that the (5,0) tube remains metallic at very low temperature, instead of the metallic-semiconducting transition claimed before.
Keywords:  phonon dispersion relations      density functional theory      carbon nanotubes  
Received:  20 October 2008      Revised:  20 June 2009      Accepted manuscript online: 
PACS:  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  61.46.Fg (Nanotubes)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10504025), the National Key Basic Research Program of China (Grant No. 2007CB607501), and the Natural Science Foundation for Distinguished Young Scholars of Hubei Province, China.

Cite this article: 

Miao Ling(缪灵), Liu Hui-Jun(刘惠军), Hu Yi(胡懿), Zhou Xiang(周详), Hu Cheng-Zheng(胡承正), and Shi Jing(石兢) Phonon dispersion relations and soft modes of 4? carbon nanotubes 2010 Chin. Phys. B 19 016301

[1] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) Chap. 10
[2] Dubay O, Kresse G and Kuzmany H 2002 Phys. Rev. Lett. 88 235506
[3] Dubay O and Kresse G 2003 Phys. Rev. B 67 035401
[4] Bohnen K P, Heid R, Liu H J and Chan C T 2004 Phys. Rev. Lett. 93 245501
[5] Connétable D, Rignanese G M, Charlier J C and Blase1 X 2005 Phys. Rev. Lett. 94 015503
[6] Tang Z K, Zhang L Y, Wang N, Zhang X X, Wen G H, Li G D, Wang J N, Chan C T and Sheng P 2001 Science 292 2462
[7] Sun H J and Liang S D 2008 Acta Phys. Sin. 57 1930 (in Chinese)
[8] Wang N, Tang Z K, Li G D and Chen J S 2000 Nature (London) 408 51
[9] Li Z M, Tang Z K, Liu H J, Wang N, Chan C T, Saito R, Okada S, Li G D, Chen J S, Nagasawa N and Tsuda S 2001 Phys. Rev. Lett. 87 127401
[10] Liu H J and Chan C T 2002 Phys. Rev. B 66 115416
[11] Xiao Y, Yan X H, Cao J X, Mao Y L and Xiang J 2004 Chin. Phys. 13 1526
[12] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[13] Baroni S, Dal Corso A, de Gironcoli S and Giannozzi P http://www.pwscf.org
[14] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864[ Kohen W and Sham L J 1965 Phys. Rev. A 140 1133
[15] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[16] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[17] Methfessel M and Paxton A 1989 Phys. Rev. B 40 3616
[18] Mermin N 1965 Phys. Rev. A 137 1441
[19] Baskin Y and Mayer L 1955 Phys. Rev. 100 544
[20] Oshima C, Aizawa T, Souda R, Ishizawa Y and Sumiyoshi Y 1988 Solid State Commun. 65 1601
[21] Siebentritt S, Pues R, Rieder K H and Shikin A M 1997 Phys. Rev. B 55 7927
[22] Maultzsch J, Reich S, Thomsen C, Requardt H and Ordejón P 2004 Phys. Rev. Lett. 92 075501
[23] Piscanec S, Lazzeri M, Mauri F, Ferrari A C and Robertson J 2004 Phys. Rev. Lett. 93 185503
[24] Huang Y, Okada M, Tanaka K and Yamabe T 1996 Phys. Rev. B 53 5129
[25] Sedeki A, Caron L G and Bourbonnais C 2000 Phys. Rev. B 62 6975
[26] Barnett R, Demler E and Kaxiras E 2005 Phys. Rev. B 71 035429
[27] Piscanec S, Lazzeri M, Robertson J, Ferrari A C and Mauri F 2004 Phys. Rev. B 75 035427
[28] AlfèD 1998 Program available at [ http://chianti.geol.ucl.ac.uk/~dario
[29] Kürti J, Zólyomi V, Kertesz M and Sun G Y 2003 New J. Phys. 5 125
[30] Li L, Li G D, Liu H J, Chan C T and Tang Z K 2003 Appl. Phys. Lett. 82 1467
[31] Li Z M, Liu H J, Ye J T, Chan C T and Tang Z K 2004 Appl. Phys. A 78 1121
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[12] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!