Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010504    DOI: 10.1088/1674-1056/19/1/010504
GENERAL Prev   Next  

A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

Chen Lin-Jie(陈林婕) and Ma Chang-Feng(马昌凤)
School of Mathematics and Computer Sciences, Fujian Normal University, Fuzhou 350007, China
Abstract  This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form $u_t+\alpha uu_x+\beta u^n u_x+\gamma u_{xx}+\delta u_{xxx}+\zeta u_{xxxx}=0$. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman--Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
Keywords:  nonlinear partial differential equation      lattice Boltzmann method      Chapman--Enskog expansion      Taylor expansion  
Received:  09 May 2009      Revised:  20 May 2009      Accepted manuscript online: 
PACS:  05.60.-k (Transport processes)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10661005) and Fujian Province Science and Technology Plan Item (Grant No. 2008F5019).

Cite this article: 

Chen Lin-Jie(陈林婕) and Ma Chang-Feng(马昌凤) A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations 2010 Chin. Phys. B 19 010504

[1] Doolen G D 1991 Physica D 47 1
[2] Lebowitz, Orsazag S A and Qlan Y H 1995 J. Stat. Phys. 68 1
[3] Chen H, Kandasamy S, Orszag S A, Shock R, Succi S and Yakhot V 2003 Science 301 633
[4] Zhou X Y, Cheng B and Shi B C 2008 Chin. Phys. B 17 238
[5] Chai Z H, Shi B C and Zheng L 2006 Chin. Phys. 15 1855
[6] Yu X M and Shi B C 2006 Chin. Phys. 15 1441
[7] Chen X W and Shi B C 2005 Chin. Phys. 14 1398
[8] Helal M A and Mehanna M S 2006 Chaos, Solitons & Fractals 28 320
[9] Guo Z L and Zhao T S 2003 Phys. Rev. E 67 066709
[10] Geyikli T and Kaya D 2005 Appl. Math. Comput. 169 971
[11] Helal M A 2001 Chaos, Solitons and Fractals 12 943
[12] Soliman A A 2006 Chaos, Solitons and Fractals 29 294
[13] Deng B, Shi B C and Wang G C 2005 Chin. Phys. Lett. 22 267
[14] Chen S, Dawson S P and Doolen G D 1995 Comput. Chem. Eng. 19 617
[15] Shen Z, Yuan G and Shen L 2000 Chin. J. Comput. Phys. 17 166
[16] Ma C F 2006 Acta Aerodynamica Sin. 24 495 (in Chinese)
[17] Ma C F 2005 Chin. Phys. Lett. 22 2313
[18] Dodd R K, Eilbeck J C and Gibbon J D 1982 Solitons and Nonlinear Wave Equations (London: Academic Press)
[19] Fan E G 2002 Phys. Lett. A 277 212
[20] Khater A H, Malfliet W and Kamel E S 2002 Math. Comput. Simula. 64 247
[21] Duan Y L, Liu R X and Jiang Y Q 2008 Appl. Math. Comput. 202 489
[22] Zhong L H, Feng S D and Dong P 2006 Phys. Rev. E 74 036704
[23] Guo Z L, Zheng C G and Shi B C 2002 Chin. Phys. 11 366
[24] Khater A H and Temsah R S 2008 Compu. Math. Appl. 56 105
[25] Lai H L and Ma C F 2009 Physica A 388 1405
[26] Fan E G 2003 Chaos, Solitons and Fractals 16 819
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[8] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[9] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[10] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[11] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[12] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[13] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[14] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
[15] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高). Chin. Phys. B, 2015, 24(1): 014703.
No Suggested Reading articles found!