Please wait a minute...
Chin. Phys., 2006, Vol. 15(4): 850-853    DOI: 10.1088/1009-1963/15/4/032

Simultaneous observation of positive and negative giant magnetoresistances in composite (La0.83Sr0.17MnO3)1-x(ITO)x

Wang Miao, Zhang Ning
Magnetoelectronic Laboratory, Nanjing Normal University, Nanjing 210097, China
Abstract  We have studied the transport property of the composites (La0.83Sr0.17 MnO3)1-x(ITO)x [ITO=(In2O3)0.95 (SnO2)0.05], which were fabricated by mechanically mixing La0.83Sr0.17 MnO3 and ITO grains. A giant positive magnetoresistance (PMR) has been observed above the Curie temperature Tc for samples with x around 0.40, in addition to the negative magnetoresistance related to spin-dependent interfacial tunnelling below Tc. For (La0.83Sr0.17MnO3)0.6(ITO)0.4, the magnetoresistive ratio for the PMR can reach 39.3% under a magnetic field H=2.24\tm105A/m. Theoretical analysis suggests that the magnetic-field-induced broadening of the p--n barrier between both kinds of grains and the density of the p--n heterostructures should be responsible for the PMR behaviour.
Keywords:  p-n heterostructure      granular system      composite      giant magnetoresistance  
Received:  17 December 2005      Revised:  25 January 2006      Published:  20 April 2006
PACS:  75.47.De (Giant magnetoresistance)  
  61.05.cp (X-ray diffraction)  
  61.66.Fn (Inorganic compounds)  
  72.20.My (Galvanomagnetic and other magnetotransport effects)  
  72.80.Tm (Composite materials)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 20473038), the Foundation of High-Tech Project in Jiangsu province, China (Grant No BG-2005401).

Cite this article: 

Wang Miao, Zhang Ning Simultaneous observation of positive and negative giant magnetoresistances in composite (La0.83Sr0.17MnO3)1-x(ITO)x 2006 Chin. Phys. 15 850

[1] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[2] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[5] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[6] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[7] Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials
Wen-Kai Yan(闫文凯), Ai-Bing Zhang(张爱兵), Li-Jun Yi(易利军), Bao-Lin Wang(王保林), Ji Wang(王骥). Chin. Phys. B, 2020, 29(5): 057301.
[8] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[9] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[10] Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2019, 28(8): 087501.
[11] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[12] Direct deposition of graphene nanowalls on ceramic powders for the fabrication of a ceramic matrix composite
Hai-Tao Zhou(周海涛), Da-Bo Liu(刘大博), Fei Luo(罗飞), Ye Tian(田野), Dong-Sheng Chen(陈冬生), Bing-Wei Luo(罗炳威), Zhang Zhou(周璋), Cheng-Min Shen(申承民). Chin. Phys. B, 2019, 28(6): 068102.
[13] Response features of nonlinear circumferential guided wave on early damage in inner layer of a composite circular tube
Ming-Liang Li(李明亮), Liang-Bing Liu(刘良兵), Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军). Chin. Phys. B, 2019, 28(4): 044301.
[14] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[15] Sm–Co high-temperature permanent magnet materials
Shiqiang Liu(刘世强). Chin. Phys. B, 2019, 28(1): 017501.
No Suggested Reading articles found!