Please wait a minute...
Chinese Physics, 2004, Vol. 13(9): 1391-1395    DOI: 10.1088/1009-1963/13/9/004
GENERAL Prev   Next  

Synchronization of chaotic systems based on adaptive observer design

Hua Chang-Chun (华长春), Guan Xin-Ping (关新平)
Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract  The synchronizing problem of a chaotic system is investigated based on the observer design. The nonlinear section is assumed to satisfy the Lipschitz condition. Firstly, the normal observer is designed based on the known Lipschitz constant and the results are given in linear matrix inequality (LMI) form. Then a fairly simple adaptive observer is designed with the Lipschitz constant unknown. Simulations on synchronizing the Lorenz system are investigated and the results show the validity and feasibility of our main results.
Keywords:  chaos synchronization      adaptive method      linear matrix inequality  
Received:  21 July 2003      Revised:  16 February 2004      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.10.Yn (Matrix theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  02.60.Dc (Numerical linear algebra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60274023).

Cite this article: 

Hua Chang-Chun (华长春), Guan Xin-Ping (关新平) Synchronization of chaotic systems based on adaptive observer design 2004 Chinese Physics 13 1391

[1] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[2] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[3] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[4] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[5] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[6] Prescribed performance synchronization for fractional-order chaotic systems
Liu Heng (刘恒), Li Sheng-Gang (李生刚), Sun Ye-Guo (孙业国), Wang Hong-Xing (王宏兴). Chin. Phys. B, 2015, 24(9): 090505.
[7] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[8] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[9] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[10] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[11] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[12] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[13] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[14] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[15] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
No Suggested Reading articles found!