|
|
|
Structural phase transition and quasi-layered active-ion distribution suppress concentration quenching in Tb3+-activated KBi(MoO4)2 |
| Mengyu Zhang(张梦宇)1,2,†, Shujing Pan(潘淑晶)1,2,†, Haitang Hu(胡海棠)3,4, Wenzhi Su(宿文志)1,2, Yong Zou(邹勇)1,2, Shoujun Ding(丁守军)1,2,‡, and Qingli Zhang(张庆礼)4 |
1 School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243002, China; 2 Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Maanshan 243002, China; 3 University of Science and Technology of China, Hefei 230026, China; 4 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
|
|
Abstract Conventional Tb$^{3+}$-doped phosphors typically suffer from concentration quenching once the doping level exceeds a critical threshold. Consequently, the development of Tb$^{3+}$ phosphors with intrinsic resistance to concentration quenching has become a key research focus. In this work, we successfully synthesized KBi(MoO$_{4}$)$_{2}$: $x$Tb$^{3+}$ ($x = 0$-100 at%) (denoted as KBM: $x$Tb$^{3+}$) phosphors via a high-temperature solid-state reaction. Remarkably, no concentration quenching was observed across the entire doping range. This anti-quenching behavior originates from the large Tb$^{3+}$-Tb$^{3+}$ interionic distance ($> 5$ Å) inherent to the quasi-layered crystal structure, which effectively suppresses multipole-interaction-mediated energy migration. At full Tb$^{3+}$ substitution ($x = 100$ at%), the material undergoes a structural phase transition from the monoclinic KBM phase to the triclinic $\alpha $-KTb(MoO$_{4}$)$_{2}$ ($\alpha $-KTM) phase. The $\alpha $-KTM phosphor exhibits excellent thermal stability (activation energy $=$ 0.6129 eV) and a single-exponential decay profile, whereas KBM: $x$Tb$^{3+}$ ($x < 100$%) display double-exponential decay behaviors, attributed to dual energy transfer pathways. These findings provide new insights into the luminescence mechanisms of high-concentration rare-earth-doped systems and offer guidance for designing next-generation anti-quenching phosphors.
|
Received: 14 September 2025
Revised: 24 October 2025
Accepted manuscript online: 06 November 2025
|
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
| |
87.15.mq
|
(Luminescence)
|
| |
32.50.+d
|
(Fluorescence, phosphorescence (including quenching))
|
| |
33.50.-j
|
(Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))
|
|
| Fund: This work was supported by the Natural Science Research Project of Anhui Province Education Department for Excellent Young Scholars (Grant No. 2024AH030007) and the National Natural Science Foundation of China (Grant No. 52202001). |
Corresponding Authors:
Shoujun Ding
E-mail: sjding@ahut.edu.cn
|
Cite this article:
Mengyu Zhang(张梦宇), Shujing Pan(潘淑晶), Haitang Hu(胡海棠), Wenzhi Su(宿文志), Yong Zou(邹勇), Shoujun Ding(丁守军), and Qingli Zhang(张庆礼) Structural phase transition and quasi-layered active-ion distribution suppress concentration quenching in Tb3+-activated KBi(MoO4)2 2026 Chin. Phys. B 35 017801
|
[1] Cho J, Park J H, Kim J K and Schubert E F 2017 Laser & Photonics Reviews 11 1600147 [2] Weinold M P, Kolesnikov S and Anadon L D 2025 Nat. Energy 10 616 [3] Tian H, Liu J W, Qiu K, Song J and Wang D J 2012 Chin. Phys. B 21 098504 [4] Li C, Zhang M, Zhang C, Su W, Zou Y, Ding S and Zhang Q 2025 Chin. Phys. B 34 087502 [5] Zhang Q, Wang X, Wu Z, Li X, Zhang K, Song Y, Fan J, Wang C K and Lin L 2023 Chin. Phys. B 32 103301 [6] Li G H, Yang N, Zhang J, Si J Y, Wang Z L, Cai G M and Wang X J 2020 Inorg. Chem. 59 3894 [7] George S D B, Nirathintavida Nittakaran S, Arockiasamy J J, Madamala S, Narasimman L, Kuppamuthu S and Xavier S S 2025 ACS Appl. Opt. Mater. 3 1011 [8] Yan L, Xing M, Ma Y, Kang L, Fu Y, Pang Q, Xin F, Wang H, Luo X and Tian Y 2024 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 308 123751 [9] Zeng C, Hu Y, Xia Z and Huang H 2015 RSC Adv. 5 68099 [10] Tikale R V, Kadam A R, Michalska-Domanska M and Dhoble S J 2025 Sci. Rep. 15 27748 [11] Fang L, Zhou X, Zhao Z, Zheng B, Xia H, Wang J, Song H and Chen B 2022 Chin. Phys. B 31 127802 [12] Baby B, Thomas S, Jose J, Gopinath M, Biju P R and Joseph C 2025 Journal of Luminescence 277 120895 [13] Dang P, Li G, Yun X, Zhang Q, Liu D, Lian H, Shang M and Lin J 2021 Light Sci. Appl. 10 29 [14] Muenchausen R E, Jacobsohn L G, Bennett B L, McKigney E A, Smith J F, Valdez J A and Cooke D W 2007 Journal of Luminescence 126 838 [15] Shi M, Zhang D and Chang C 2015 J. Alloys Compd. 627 25 [16] Kang T W, Jeong G J, Kim J H, Bae B and Kim S W 2022 New J. Chem. 46 10722 [17] Samal S K, Pushpendra, Yadav J and Naidu B S 2023 Ceramics International 49 20051 [18] Morozov V A, Posokhova S M, Istomin S Ya, Deyneko D V, Savina A A, Redkin B S, Lyskov N V, Spassky D A, Belik A A and Lazoryak B I 2021 Inorg. Chem. 60 9471 [19] Raj C J, Krishnan S, Dinakaran S, Priya S M N, Uthrakumar R and Das S J 2008 Crystal Growth & Design 8 3956 [20] Wang M, Wang C, Wang J, Lu L, Gong X, Tang X, Zhang F and You J 2020 Materials 13 5453 [21] Jayaraman A, Sharma S K, Wang S Y, Shieh S R, Ming L C and Cheong S W 1996 Pramana J. Phys. 47 151 [22] Noras J M 1980 J. Phys. C: Solid State Phys. 13 4779 [23] Zhou Y J, Zhang Y, Wang F J and Chen G L 2008 Appl. Phys. Lett. 92 241917 [24] Wang H, Yang T, Feng L, Ning Z, Liu M, Lai X, Gao D and Bi J 2018 J. Electron. Mater. 47 6494 [25] Demesh M, Gorbachenya K, Kisel V, Volkova E, Maltsev V, Koporulina E, Dunina E, Kornienko A, Fomicheva L and Kuleshov N 2021 OSA Continuum 4 822 [26] Huang Y, Zhou L, Yang L and Tang Z 2011 Opt. Mater. 33 777 [27] Ju H, Deng W, Wang B, Liu J, Tao X and Xu S 2012 J. Alloys Compd. 516 153 [28] Joubert M F, Jacquier B and Moncorge R 1983 Phys. Rev. B 28 3725 [29] Shi M, Zhang D and Chang C 2015 J. Alloys Compd. 627 25 [30] Boruc Z, Fetlinski B, Kaczkan M, Turczynski S, Pawlak D and Malinowski M 2012 J. Alloys Compd. 532 92 [31] Lv Q, Shao B, Ma X, Yang S, Wang C, Dong Y, Dong E and Wang C 2023 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 287 122126 [32] Tingming Jiang T J, Xue Yu X Y, Xuhui Xu X X, Hongling Yu H Y, Dacheng Zhou D Z and Jianbei Qiu J Q 2014 Chin. Opt. Lett. 12 011601 [33] Wang S, Lyu Z, Lu Z, Wang L, Wang J, Sun D, Tan T, Shen S and You H 2023 J. Mater. Chem. C 11 10634 [34] Chi F, Liu Q, Zhang J, Jiang B, Niu X and Liu S 2023 Opt. Mater. 143 114245 [35] Tsai Y Y, Chen H L, Chai Y L and Chang Y S 2013 Opt. Mater. 35 317 [36] Wu X, Qin S, Zhang R, Guo Y and Huang J 2024 ACS Appl. Nano Mater. 7 19593 [37] Jamal M U, Nagirnyi V, Chernenko K, Kotlov A, Smortsova Y and Spassky D 2025 Materials Research Bulletin 191 113553 [38] Hwang T Y, Choi Y, Song Y, Eom N S A, Kim S, Cho H B, Myung N V and Choa Y H 2018 J. Mater. Chem. C 6 972 [39] Mansouri S, Jandl S, Balli M, Laverdiere J, Fournier P and Dimitrov D Z 2016 Phys. Rev. B 94 115109 [40] Lin C C, Tsai T, Johnston H E, Fang H, Yu F, Zhou W, Whitfield P, Li Y, Wang J, Liu S and Attfield J P 2017 J. Am. Chem. Soc. 34 11766 [41] Yao Q, Hu P, Sun P, Liu M, Dong R, Chao K, Liu Y, Jiang J and Jiang H 2020 Adv. Mater. 32 1907888 [42] Samariha B and Rezaee Ebrahim Saraee K 2018 Journal of Luminescence 198 389 [43] Hakami J, Kaynar U H, Ayvacikli M, Coban M B, Garcia-Guinea J, Townsend P D, Oglakci M and Can N 2022 Ceramics International 48 32256 [44] Patel N P, Srinivas M, Modi D, Verma V and Murthy K V R 2018 Rare Met. 37 587 [45] Murthy K V R, Prasad A S S and Rao M R 2012 Physics Procedia 29 70 [46] Yin H, Li Y, Bai J, Ma M and Liu J 2017 Journal of Materiomics 3 144 [47] Yuan H, Ma H, Wang G, Jia H and Sun X 2025 Journal of Molecular Structure 1321 139776 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|