Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 125202    DOI: 10.1088/1674-1056/ade24b
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Optimization of an m = 0 multi-loop helicon source configuration for linear plasma devices: A comparative study with Boswell and half-helix antenna designs

Yi Yu(余羿)1,†, Hao Liu(刘灏)2,‡, Xue-Dong Huang(黄学栋)1, Chen-Yu Xiao(肖晨雨)1, Lin Nie(聂林)2, Guang-Yi Zhao(赵光义)2, and Min Xu(许敏)2
1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China 2 Southwestern Institute of Physics, Chengdu 610041, China
Abstract  This article presents the physics for determining an appropriate helicon plasma source for the linear experimental advanced device (LEAD) through tripartite mutual verification encompassing theoretical analysis, code simulation, and experimental validation. Using the HELIC code, plasma excitation processes were simulated with three antenna configurations: $m =1 $ half-helix, $m =1 $ Boswell, and $m =0 $ single-loop helicon antennas, and complemented by theoretical analysis. Key parameters including plasma impedance ($R_{\rm p}$) and energy deposition profiles along radial ($P_{r}$) and axial ($P_{z}$) directions were comparatively analyzed, revealing significantly enhanced $R_{\rm p}$, $P_{r}$, and $P_{z}$ values for the loop antenna configuration as compared with other configurations. Wave propagation equation solutions predicted a primary plasma generation layer at the antenna center; numerical simulations identified an additional plasma formation region at the antenna boundary, indicative of edge Landau damping effects. Interestingly, stronger axial magnetic fields do not necessarily result in higher plasma densities, especially for $m =0 $ antenna configurations. Experimental validation conducted with an $m =0 $ multi-loop plasma source confirmed these findings. Both theoretical analyses and experimental studies on large-volume plasma generation utilizing this innovative source elucidated the underlying mechanisms responsible for the remarkable low mode transition threshold of 150-watt input power and demonstrated significantly enhanced plasma confinement properties.
Keywords:  multi-loop helicon source      m=0 helicon source      linear plasma device  
Received:  28 March 2025      Revised:  28 May 2025      Accepted manuscript online:  09 June 2025
PACS:  52.50.Dg (Plasma sources)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.75.-d (Plasma devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE03100002) and the National Natural Science Foundation of China (Grant Nos. 12435015 and 12075241).
Corresponding Authors:  Yi Yu, Hao Liu     E-mail:  yuyi56@mail.sysu.edu.cn;liuhao@swip.ac.cn

Cite this article: 

Yi Yu(余羿), Hao Liu(刘灏), Xue-Dong Huang(黄学栋), Chen-Yu Xiao(肖晨雨), Lin Nie(聂林), Guang-Yi Zhao(赵光义), and Min Xu(许敏) Optimization of an m = 0 multi-loop helicon source configuration for linear plasma devices: A comparative study with Boswell and half-helix antenna designs 2025 Chin. Phys. B 34 125202

[1] Antonov N N, Usmanov R A, Gavrikov A V and Smirnov V P 2019 J. Phys.: Conf. Ser. 1147 012133
[2] van Eck H J N, Abrams T, van den Berg M A, et al. 2014 Fusion Eng. Des. 89 2150
[3] Cojocaru G 2000 Rev. Sci. Instrum. 71 966
[4] Lehane J A and Thonemann P C 1965 Proc. Phys. Soc. 85 301
[5] Okamura S, Adati K, Aoki T, Baker D R, Fujita H, Garner H R, Hattori K, Hidekuma S, Kawamoto T, Kumazawa R, Okubo Y and Sato T 1986 Nucl. Fusion 26 1491
[6] Boswell R W 1970 Phys. Lett. 33A 457
[7] Miljak D G and Chen F F 1998 Plasma Sources Sci. Technol. 7 61
[8] Seto T, Ezumi N, Miyauchi R, Shigematsu N, Okamoto T, Takahashi S, et al. 2023 Plasma Fusion Res. 18 2401054
[9] Xu T C, Yang X Y, Guo Z B, Xiao C J, Wang X G and He R C 2020 Nucl. Fusion 60 016029
[10] Oldenburger S, Inagaki S, Kobayashi T, Arakawa H, Ohyama N, Kawashima K, Tobimatsu Y, Fujisawa A, Itoh K and Itoh S I 2012 Plasma Phys. Control. Fusion 54 055002
[11] Shinohara S, Takechi S and Kawai Y 1996 Jpn. J. Appl. Phys. 35 4503
[12] Shinohara S 2018 Adv. Phys. X 3 14204243
[13] Takahashi K, Chiba A, Komuro A, et al. 2015 Phys. Rev. Lett. 114 195001
[14] Arnush D 2000 Phys. Plasmas 7 3042
[15] Chen F F 1991 Plasma Phys. Control. Fusion 33 339
[16] Kline J L, Scime E E, Boivin R F, Keesee A M and Sun X 2002 Phys. Rev. Lett. 88 195002
[17] Chabert P and Braithwaite N 2011 Physics of radio-frequency plasmas (Cambridge: Cambridge University Press) p. 272
[18] Shinohara S, Hada T, Motomura T, Tanaka K, Tanikawa T, Toki K, Tanaka Y and Shamrai K P 2009 Phys. Plasmas 16 057104
[19] Liu H, Yu Y, Xiao C Y, Yuan Z H, Wang H J, Nie L, Ke R, Long T, Gong S B and Xu M 2023 Plasma Phys. Control. Fusion 65 055017
[1] New progress on DC H2+ beam generation: Tens of mA output and 70% fraction from a 2.45 GHz microwave driven ion source
Bujian Cui(崔步坚), Shixiang Peng(彭士香), Jianbin Zhu(朱建斌), Yicheng Dong(董宜承), Zhiyu Guo(郭之虞), and Jiaer Chen(陈佳洱). Chin. Phys. B, 2025, 34(8): 085203.
[2] Power transfer efficiency in an air-breathing radio frequency ion thruster
Gao-Huang Huang(黄高煌), Hong Li(李宏), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2024, 33(7): 075201.
[3] Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet
Hui-Min Xu(许慧敏), Jing-Ge Gao(高敬格), Peng-Ying Jia(贾鹏英), Jun-Xia Ran(冉俊霞), Jun-Yu Chen(陈俊宇), and Jin-Mao Li(李金懋). Chin. Phys. B, 2024, 33(1): 015205.
[4] Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
Xiong Chen(陈雄), Xing-Quan Wang(王兴权), Bin-Xiang Zhang(张彬祥), Ming Yuan(袁明), and Si-Ze Yang(杨思泽). Chin. Phys. B, 2023, 32(11): 115201.
[5] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[6] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[7] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[10] Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xingyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), and Yuedong Meng(孟月东). Chin. Phys. B, 2020, 29(12): 125201.
[11] Characteristics of non-thermal AC arcs in multi-arc generator
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xinyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), Yuedong Meng(孟月东). Chin. Phys. B, 2019, 28(12): 125205.
[12] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[13] Practical 2.45-GHz microwave-driven Cs-free H- ion source developed at Peking University
Tao Zhang(张滔), Shi-Xiang Peng(彭士香), Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Teng-Hao Ma(马腾昊), Yao-Xiang Jiang(蒋耀湘), Jiang Sun(孙江), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2018, 27(10): 105208.
[14] A miniaturized 2.45 GHz ECR ion source at Peking University
Jia-Mei Wen(温佳美), Shi-Xiang Peng(彭士香), Hai-Tao Ren(任海涛), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Wen-Bin Wu(武文斌), Jiang Sun(孙江), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2018, 27(5): 055204.
[15] Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter
Sheng-Fang Huang(黄胜方), Hui-Min Song(宋慧敏), Yun Wu(吴云), Min Jia(贾敏), Di Jin(金迪), Zhi-Bo Zhang(张志波), Bing-Xuan Lin(林冰轩). Chin. Phys. B, 2018, 27(3): 035203.
No Suggested Reading articles found!