Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 125201    DOI: 10.1088/1674-1056/ab9de9
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2

Qifu Lin(林启富)1,2, Yanjun Zhao(赵彦君)1,2, Wenxue Duan(段文学)1, Guohua Ni(倪国华)1,3,†, Xingyue Jin(靳兴月)1,2,3, Siyuan Sui(隋思源)1,2, Hongbing Xie(谢洪兵)1, and Yuedong Meng(孟月东)1
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 AnHui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, China
Abstract  We investigate characteristics of multi-arc torches with three pairs of electrodes (three cathodes and three anodes) and their performance on the spheroidization of SiO2 powder. The effect of electrode arrangement, including adjacent pattern (AD pattern, adjacent electrodes powered by one power supply) and opposite pattern (OP pattern, opposite electrodes powered by one power supply), on the dynamics of arc plasma is investigated based on synchronous acquisition of electrical and optical signals. The results show that both the voltage and spatial distribution of each arc of multiple arcs are more stable compared with those of a single arc. The fluctuation of an arc in multiple arcs mainly comes from the small-scale arc-to-arc restrikes among multiple arcs. Moreover, these arc-to-arc restrikes occur more frequently among multiple arc columns in OP pattern than in AD pattern. Moreover, the high-temperature area of the central region of arc chamber in OP pattern is larger than that in AP pattern. For the spheroidization of SiO2 in this multi-arc generator, the spheronization degrees of plasma treated silica in OP pattern are at least 20% higher than those in AD pattern.
Keywords:  characteristics      multiple arcs      arc volume      spheroidization  
Received:  23 June 2020      Revised:  20 July 2020      Accepted manuscript online:  28 July 2020
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.50.Dg (Plasma sources)  
  52.30.-q (Plasma dynamics and flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875295 and 11535003), the National Key R&D Program of China (Grant No. 2019YFC0119000), Provincial Science and Technology Major Project of Anhui Province, China (Grant No. 17030801035), and Key Program of 13th Five-Year Plan, CASHIPS, China (Grant No. KP-2017-25).
Corresponding Authors:  Corresponding author. E-mail: ghni@ipp.ac.cn   

Cite this article: 

Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xingyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), and Yuedong Meng(孟月东) Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2 2020 Chin. Phys. B 29 125201

[1] Osterhouse D J, Lindsay J W and Heberlein J V R J. Phys. D: Appl. Phys. 46 224013 DOI: 10.1088/0022-3727/46/22/2240132013
[2] Kavka T, Chumak O, šonsky J, Heinrich M, Stehrer T and Pauser H J. Phys. D: Appl. Phys. 46 065202 DOI: 10.1088/0022-3727/46/6/0652022013
[3] Pakseresht A H, Rahimipour M R, Vaezi M R and Salehi M Mater. Chem. Phys. 173 395 DOI: 10.1016/j.matchemphys.2016.02.0282016
[4] Kumar S, Selvarajan V, Padmanabhan P V A and Sreekumar K P J. Mater. Process. Technol. 176 87 DOI: 10.1016/j.jmatprotec.2006.02.0232006
[5] Pershin L, Mitrasinovic A and Mostaghimi J J. Phys. D: Appl. Phys. 46 224019 DOI: 10.1088/0022-3727/46/22/2240192013
[6] Bobzin K, Kopp N, Warda T, Petković I, Zimmermann S, Hartz-Behrend K, Landes K, Forster G, Kirner S, Marquès J L, Schein J, Prehm J, Móhwald K and Bach F W J. Thermal Spray Technol. 22 502 DOI: 10.1007/s11666-013-9902-22013
[7] Liu T, Ansar A and Arnold J Plasma Chem. Plasma Process. 37 1009 DOI: 10.1007/s11090-017-9795-92017
[8] Wang F, Cressault Y, Teulet P, Li H and Yang K Plasma Chem. Plasma Process. 39 1049 DOI: 10.1007/s11090-019-09967-82019
[9] Perna A, Minutillo M, Lubrano Lavadera A and Jannelli E Waste Manag. 73 424 DOI: 10.1016/j.wasman.2017.09.0222018
[10] Liang F, Tanaka M, Choi S and Watanabe T Carbon 117 100 DOI: 10.1016/j.carbon.2017.02.0842017
[11] Lei P, Boies A M, Calder S and Girshick S L Plasma Chem. Plasma Process. 32 519 DOI: 10.1007/s11090-012-9364-12012
[12] Poritskii P V High Temperature 44 328 DOI: 10.1007/s10740-006-0042-y2006
[13] Lowke J J J. Appl. Phys. 41 2588 DOI: 10.1063/1.16592681970
[14] Wang L L, Lu F G, Wang H P, Murphy A B and Tang X H J. Phys. D: Appl. Phys. 47 465202 DOI: 10.1088/0022-3727/47/46/4652022014
[15] Harry J E and Hobson L J. Phys. E: Sci. Instrum. 12 357 DOI: 10.1088/0022-3735/12/5/0061979
[16] Harry J E and Hobson L IEEE Trans. Plasma Sci. 7 157 DOI: 10.1109/TPS.1979.43172211979
[17] van der Walt I J, Havenga J L and Nel J T IEEE 35th International Conference on Plasma Science, June 15-19, 2008, Karlsruhe, Germany, p. 1 DOI: 10.1109/PLASMA.2008.45909022008
[18] Chen L W, Meng Y D, Shen J, Shu X S, Fang S D and Xiong X Y J. Phys. D: Appl. Phys. 42 055505 DOI: 10.1088/0022-3727/42/5/0555052009
[19] Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F and Yano T Chem. Engin. J. 139 390 DOI: 10.1016/j.cej.2007.11.0162008
[20] Liu Y, Tanaka M, Choi S and Watanabe T Int. J. Appl. Glass Sci. 5 443 DOI: 10.1111/ijag.2014.5.issue-42014
[21] Watanabe T, Liu Y and Tanaka M Plasma Chem. Plasma Process. 34 443 DOI: 10.1007/s11090-014-9530-82014
[22] Schein J, Zierhut J, Dzulko M, Forster G and Landes K D Contrib. Plasma Phys. 47 498 DOI: 10.1002/(ISSN)1521-39862007
[23] Zhang D Q, Zheng L L, Hu X Y and Zhang H Int. J. Heat. Mass. Tranaform. 98 508 DOI: 10.1016/j.ijheatmasstransfer.2016.03.0382016
[24] Wang C, Cui H-C, Li W-W, Liao M-R, Xia W-L and Xia W-D Chin. Phys. B 26 025202 DOI: 10.1088/1674-1056/26/2/0252022017
[25] Wang C, Zhang Z, Xia W, Cui H and Xia W Plasma Chem. Plasma Process. 37 371 DOI: 10.1007/s11090-016-9782-62017
[26] Rehmet C, Rohani V, Cauneau F and Fulcheri L Plasma Chem. Plasma Process. 33 491 DOI: 10.1007/s11090-013-9438-82013
[27] Rehmet C, Fabry F, Rohani V, Cauneau F and Fulcheri L Plasma Chem. Plasma Process. 33 779 DOI: 10.1007/s11090-013-9458-42013
[28] Collares M P and Pfender E IEEE Trans. Plasma Sci. 25 864 DOI: 10.1109/27.6495821997
[29] Eckert E R G, Pfender E and Wutzke S A AIAA J. 6 1474 DOI: 10.2514/3.47911968
[30] Rat V, Mavier F and Coudert J F Plasma Chem. Plasma Process. 37 549 DOI: 10.1007/s11090-017-9797-72017
[31] Tu X, Yan J, Yu L, Cen K and Cheron B Appl. Phys. Lett. 91 131501 DOI: 10.1063/1.27893972007
[32] Coudert J F, Planche M P and Fauchais P Plasma Chem. Plasma Process. 16 S211 DOI: 10.1007/BF015126361995
[33] Duan Z and Heberlein J J. Thermal Spray Technol. 11 44 DOI: 10.1361/1059963027703489612002
[34] Takana H, Jang J, Igawa J, Nakajima T, Solonenko O P and Nishiyama H J. Thermal Spray Technol. 20 432 DOI: 10.1007/s11666-010-9547-32010
[35] Chumak O, Kavka T and Hrabovsky M IEEE Trans. Plasma Sci. 36 1062 DOI: 10.1109/TPS.2008.9245542008
[36] Yao Y, Yatsuda K, Watanabe T, Matsuura T and Yano T Plasma Chem. Plasma Process. 29 333 DOI: 10.1007/s11090-009-9182-22009
[37] Ghiyasiyan-Arani M, Masjedi-Arani M and Salavati-Niasari M J. Mater. Sci.: Mater. Electron. 27 4871 DOI: 10.1007/s10854-016-4370-32016
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[5] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[6] Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
Yang Kang(康杨), Ning Li(李宁), Xiao-Long Huang(黄孝龙), and Chun-Sheng Weng(翁春生). Chin. Phys. B, 2022, 31(10): 104701.
[7] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[8] Investigation of hypersonic flows through a cavity with sweepback angle in near space using the DSMC method
Guangming Guo(郭广明), Hao Chen(陈浩), Lin Zhu(朱林), and Yixiang Bian(边义祥). Chin. Phys. B, 2021, 30(7): 074701.
[9] A new algorithm based on C-V characteristics to extract the epitaxy layer parameters for power devices with the consideration of termination
Jiupeng Wu(吴九鹏), Na Ren(任娜), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(4): 048505.
[10] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[11] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[12] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[13] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[14] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[15] Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure
Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛). Chin. Phys. B, 2020, 29(5): 057306.
No Suggested Reading articles found!