PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2 |
Qifu Lin(林启富)1,2, Yanjun Zhao(赵彦君)1,2, Wenxue Duan(段文学)1, Guohua Ni(倪国华)1,3,†, Xingyue Jin(靳兴月)1,2,3, Siyuan Sui(隋思源)1,2, Hongbing Xie(谢洪兵)1, and Yuedong Meng(孟月东)1 |
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 AnHui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, China |
|
|
Abstract We investigate characteristics of multi-arc torches with three pairs of electrodes (three cathodes and three anodes) and their performance on the spheroidization of SiO2 powder. The effect of electrode arrangement, including adjacent pattern (AD pattern, adjacent electrodes powered by one power supply) and opposite pattern (OP pattern, opposite electrodes powered by one power supply), on the dynamics of arc plasma is investigated based on synchronous acquisition of electrical and optical signals. The results show that both the voltage and spatial distribution of each arc of multiple arcs are more stable compared with those of a single arc. The fluctuation of an arc in multiple arcs mainly comes from the small-scale arc-to-arc restrikes among multiple arcs. Moreover, these arc-to-arc restrikes occur more frequently among multiple arc columns in OP pattern than in AD pattern. Moreover, the high-temperature area of the central region of arc chamber in OP pattern is larger than that in AP pattern. For the spheroidization of SiO2 in this multi-arc generator, the spheronization degrees of plasma treated silica in OP pattern are at least 20% higher than those in AD pattern.
|
Received: 23 June 2020
Revised: 20 July 2020
Accepted manuscript online: 28 July 2020
|
PACS:
|
52.80.Mg
|
(Arcs; sparks; lightning; atmospheric electricity)
|
|
52.70.-m
|
(Plasma diagnostic techniques and instrumentation)
|
|
52.50.Dg
|
(Plasma sources)
|
|
52.30.-q
|
(Plasma dynamics and flow)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875295 and 11535003), the National Key R&D Program of China (Grant No. 2019YFC0119000), Provincial Science and Technology Major Project of Anhui Province, China (Grant No. 17030801035), and Key Program of 13th Five-Year Plan, CASHIPS, China (Grant No. KP-2017-25). |
Corresponding Authors:
†Corresponding author. E-mail: ghni@ipp.ac.cn
|
Cite this article:
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xingyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), and Yuedong Meng(孟月东) Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2 2020 Chin. Phys. B 29 125201
|
[1] Osterhouse D J, Lindsay J W and Heberlein J V R J. Phys. D: Appl. Phys. 46 224013 DOI: 10.1088/0022-3727/46/22/2240132013 [2] Kavka T, Chumak O, šonsky J, Heinrich M, Stehrer T and Pauser H J. Phys. D: Appl. Phys. 46 065202 DOI: 10.1088/0022-3727/46/6/0652022013 [3] Pakseresht A H, Rahimipour M R, Vaezi M R and Salehi M Mater. Chem. Phys. 173 395 DOI: 10.1016/j.matchemphys.2016.02.0282016 [4] Kumar S, Selvarajan V, Padmanabhan P V A and Sreekumar K P J. Mater. Process. Technol. 176 87 DOI: 10.1016/j.jmatprotec.2006.02.0232006 [5] Pershin L, Mitrasinovic A and Mostaghimi J J. Phys. D: Appl. Phys. 46 224019 DOI: 10.1088/0022-3727/46/22/2240192013 [6] Bobzin K, Kopp N, Warda T, Petković I, Zimmermann S, Hartz-Behrend K, Landes K, Forster G, Kirner S, Marquès J L, Schein J, Prehm J, Móhwald K and Bach F W J. Thermal Spray Technol. 22 502 DOI: 10.1007/s11666-013-9902-22013 [7] Liu T, Ansar A and Arnold J Plasma Chem. Plasma Process. 37 1009 DOI: 10.1007/s11090-017-9795-92017 [8] Wang F, Cressault Y, Teulet P, Li H and Yang K Plasma Chem. Plasma Process. 39 1049 DOI: 10.1007/s11090-019-09967-82019 [9] Perna A, Minutillo M, Lubrano Lavadera A and Jannelli E Waste Manag. 73 424 DOI: 10.1016/j.wasman.2017.09.0222018 [10] Liang F, Tanaka M, Choi S and Watanabe T Carbon 117 100 DOI: 10.1016/j.carbon.2017.02.0842017 [11] Lei P, Boies A M, Calder S and Girshick S L Plasma Chem. Plasma Process. 32 519 DOI: 10.1007/s11090-012-9364-12012 [12] Poritskii P V High Temperature 44 328 DOI: 10.1007/s10740-006-0042-y2006 [13] Lowke J J J. Appl. Phys. 41 2588 DOI: 10.1063/1.16592681970 [14] Wang L L, Lu F G, Wang H P, Murphy A B and Tang X H J. Phys. D: Appl. Phys. 47 465202 DOI: 10.1088/0022-3727/47/46/4652022014 [15] Harry J E and Hobson L J. Phys. E: Sci. Instrum. 12 357 DOI: 10.1088/0022-3735/12/5/0061979 [16] Harry J E and Hobson L IEEE Trans. Plasma Sci. 7 157 DOI: 10.1109/TPS.1979.43172211979 [17] van der Walt I J, Havenga J L and Nel J T IEEE 35th International Conference on Plasma Science, June 15-19, 2008, Karlsruhe, Germany, p. 1 DOI: 10.1109/PLASMA.2008.45909022008 [18] Chen L W, Meng Y D, Shen J, Shu X S, Fang S D and Xiong X Y J. Phys. D: Appl. Phys. 42 055505 DOI: 10.1088/0022-3727/42/5/0555052009 [19] Yao Y, Hossain M M, Watanabe T, Matsuura T, Funabiki F and Yano T Chem. Engin. J. 139 390 DOI: 10.1016/j.cej.2007.11.0162008 [20] Liu Y, Tanaka M, Choi S and Watanabe T Int. J. Appl. Glass Sci. 5 443 DOI: 10.1111/ijag.2014.5.issue-42014 [21] Watanabe T, Liu Y and Tanaka M Plasma Chem. Plasma Process. 34 443 DOI: 10.1007/s11090-014-9530-82014 [22] Schein J, Zierhut J, Dzulko M, Forster G and Landes K D Contrib. Plasma Phys. 47 498 DOI: 10.1002/(ISSN)1521-39862007 [23] Zhang D Q, Zheng L L, Hu X Y and Zhang H Int. J. Heat. Mass. Tranaform. 98 508 DOI: 10.1016/j.ijheatmasstransfer.2016.03.0382016 [24] Wang C, Cui H-C, Li W-W, Liao M-R, Xia W-L and Xia W-D Chin. Phys. B 26 025202 DOI: 10.1088/1674-1056/26/2/0252022017 [25] Wang C, Zhang Z, Xia W, Cui H and Xia W Plasma Chem. Plasma Process. 37 371 DOI: 10.1007/s11090-016-9782-62017 [26] Rehmet C, Rohani V, Cauneau F and Fulcheri L Plasma Chem. Plasma Process. 33 491 DOI: 10.1007/s11090-013-9438-82013 [27] Rehmet C, Fabry F, Rohani V, Cauneau F and Fulcheri L Plasma Chem. Plasma Process. 33 779 DOI: 10.1007/s11090-013-9458-42013 [28] Collares M P and Pfender E IEEE Trans. Plasma Sci. 25 864 DOI: 10.1109/27.6495821997 [29] Eckert E R G, Pfender E and Wutzke S A AIAA J. 6 1474 DOI: 10.2514/3.47911968 [30] Rat V, Mavier F and Coudert J F Plasma Chem. Plasma Process. 37 549 DOI: 10.1007/s11090-017-9797-72017 [31] Tu X, Yan J, Yu L, Cen K and Cheron B Appl. Phys. Lett. 91 131501 DOI: 10.1063/1.27893972007 [32] Coudert J F, Planche M P and Fauchais P Plasma Chem. Plasma Process. 16 S211 DOI: 10.1007/BF015126361995 [33] Duan Z and Heberlein J J. Thermal Spray Technol. 11 44 DOI: 10.1361/1059963027703489612002 [34] Takana H, Jang J, Igawa J, Nakajima T, Solonenko O P and Nishiyama H J. Thermal Spray Technol. 20 432 DOI: 10.1007/s11666-010-9547-32010 [35] Chumak O, Kavka T and Hrabovsky M IEEE Trans. Plasma Sci. 36 1062 DOI: 10.1109/TPS.2008.9245542008 [36] Yao Y, Yatsuda K, Watanabe T, Matsuura T and Yano T Plasma Chem. Plasma Process. 29 333 DOI: 10.1007/s11090-009-9182-22009 [37] Ghiyasiyan-Arani M, Masjedi-Arani M and Salavati-Niasari M J. Mater. Sci.: Mater. Electron. 27 4871 DOI: 10.1007/s10854-016-4370-32016 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|