Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120507    DOI: 10.1088/1674-1056/addeb7
GENERAL Prev   Next  

Energy mechanism of the first-order superradiant phase transition in cavity-BEC system with double asymmetric pump beams

Wei Qin(覃威)1,2,†, Dong-Chen Zheng(郑东琛)1,2,†, Jia-Ying Lin(林佳颖)1,2, Yuan-Hong Chen(陈元鸿)1,2, and Renyuan Liao(廖任远)1,2,‡
1 College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China;
2 Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China
Abstract  We consider a Bose-Einstein condensate loaded inside an optical cavity and exposed to two crossed coherent pump fields with same imbalance parameter $\gamma$. We identify different effects between pure standing wave fields ($\gamma=1$) and the pump beams combining standing wave and running wave ($\gamma\neq1$). In particular, for $\gamma=1$, the system only hosts a normal phase and a superradiant phase. In contrast, for $\gamma\neq1$, the system features three distinctive phases: the normal phase ($\mathrm{NP}$), superradiant phase 1 ($\mathrm{SR}_1$), and superradiant phase 2 ($\mathrm{SR}_2$). Importantly, the superradiance is subdivided into different types characterized by the photon phase. Furthermore, we determine perturbatively the phase boundary separating the normal phase and the superradiant phases, and find that there exists a competitive relationship of energy minimum on the overlapping region between $\mathrm{SR_1}$ and $\mathrm{SR_2}$. Interestingly, the transition between the normal phase to $\mathrm{SR_1}$ or $\mathrm{SR_2}$ is identified to be a second-order phase transition, while the transition between $\mathrm{SR_1}$ and $\mathrm{SR_2}$ is a first-order transition. When the first-order phase transition occurs, the phase of the photons changes abruptly from $0$ to $\pi/2$.
Keywords:  Bose-Einstein condensate      superradiant phase transition      light-atom hybrid system  
Received:  21 March 2025      Revised:  22 May 2025      Accepted manuscript online:  30 May 2025
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  64.70.Tg (Quantum phase transitions)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174055 and 11674058) and the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01195).
Corresponding Authors:  Renyuan Liao     E-mail:  ryliao@fjnu.edu.cn

Cite this article: 

Wei Qin(覃威), Dong-Chen Zheng(郑东琛), Jia-Ying Lin(林佳颖), Yuan-Hong Chen(陈元鸿), and Renyuan Liao(廖任远) Energy mechanism of the first-order superradiant phase transition in cavity-BEC system with double asymmetric pump beams 2025 Chin. Phys. B 34 120507

[1] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553
[2] Vaidya V D, Guo Y, Kroeze R M, Ballantine K E, Kollár A J, Keeling J and Lev B L 2018 Phys. Rev. X 8 011002
[3] Mivehvar F, Piazza F, Donner T and Ritsch H 2021 Advances in Physics 70 1
[4] Zhang X, Chen Y, Wu Z, Wang J, Fan J, Deng S and Wu H 2021 Science 373 1359
[5] Kongkhambut P, Skulte J, Mathey L, Cosme J G, Hemmerich A and Kebler H 2022 Science 377 670
[6] Dreon D, Baumgärtner A, Li X, Hertlein S, Esslinger T and Donner T 2022 Nature 608 494
[7] Helson V, Zwettler T, Mivehvar F, Colella E, Roux K, Konishi H, Ritsch H and Brantut J P 2023 Nature 618 716
[8] Fraxanet J, Dauphin A, Lewenstein M, Barbiero L and González- Cuadra D 2023 Phys. Rev. Lett. 131 263001
[9] Masalaeva N, Ritsch H and Mivehvar F 2023 Phys. Rev. Lett. 131 173401
[10] Skulte J, Kongkhambut P, Rao S, Mathey L, Keßler H, Hemmerich A and Cosme J G 2023 Phys. Rev. Lett. 130 163603
[11] Yan Z, Ho J, Lu Y H, Masson S J, Asenjo-Garcia A and Stamper-Kurn D M 2023 Phys. Rev. Lett. 131 253603
[12] Young D J, Chu A, Song E Y, Barberena D, Wellnitz D, Niu Z, Schäfer V M, Lewis-Swan R J, Rey A M and Thompson J K 2024 Nature 625 679
[13] Marsh B P, Kroeze R M, Ganguli S, Gopalakrishnan S, Keeling J and Lev B L 2024 Phys. Rev. X 14 011026
[14] Finger F, Rosa-Medina R, Reiter N, Christodoulou P, Donner T and Esslinger T 2024 Phys. Rev. Lett. 132 093402
[15] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301
[16] Mottl R, Brennecke F, Baumann K, Landig R, Donner T and Esslinger T 2012 Science 336 1570
[17] Norcia M A, Lewis-Swan R J, Cline J R K, Zhu B, Rey A M and Thompson J K 2018 Science 361 259
[18] Mivehvar F, Ritsch H and Piazza F 2019 Phys. Rev. Lett. 122 113603
[19] Defenu N, Donner T, Macrí T, Pagano G, Ruffo S and Trombettoni A 2023 Rev. Mod. Phys. 95 035002
[20] Wu Z, Fan J, Zhang X, Qi J andWu H 2023 Phys. Rev. Lett. 131 243401
[21] Baumann K, Mottl R, Brennecke F and Esslinger T 2011 Phys. Rev. Lett. 107 140402
[22] Klinder J, Keßler H, Bakhtiari M R, Thorwart M and Hemmerich A 2015 Phys. Rev. Lett. 115 230403
[23] Li X, Dreon D, Zupancic P, Baumgärtner A, Morales A, Zheng W, Cooper N R, Donner T and Esslinger T 2021 Phys. Rev. Res. 3 L012024
[24] Nie X and Zheng W 2023 Phys. Rev. A 108 043312
[25] Nagy D, Szirmai G and Domokos P 2008 Eur. Phys. J. D 48 127
[26] Piazza F, Strack P and Zwerger W 2013 Ann. Phys. 339 135
[27] Chen Y, Liu M and Chen X 2023 Chin. Phys. B 32 104213
[28] Zupancic P, Dreon D, Li X, Baumgärtner A, Morales A, Zheng W, Cooper N R, Esslinger T and Donner T 2019 Phys. Rev. Lett. 123 233601
[29] Tan H, Han J, ZhengW, Yuan J and Li Y 2022 Phys. Rev. A 106 023315
[30] Bhaseen M J, Mayoh J, Simons B D and Keeling J 2012 Phys. Rev. A 85 013817
[31] Piazza F and Ritsch H 2015 Phys. Rev. Lett. 115 163601
[32] Léonard J, Morales A, Zupancic P, Donner T and Esslinger T 2017 Science 358 1415
[33] Léonard J, Morales A, Zupancic P, Esslinger T and Donner T 2017 Nature 543 87
[34] Mivehvar F, Ostermann S, Piazza F and Ritsch H 2018 Phys. Rev. Lett. 120 123601
[35] Morales A, Zupancic P, Léonard J, Esslinger T and Donner T 2018 Nat. Mater. 17 686
[36] Qin W, Zheng D C, Wu Z D, Chen Y H and Liao R 2024 Phys. Rev. A 109 013310
[37] Wu B H, Yang X X, Chen Y and Zhang W 2024 Chin. Phys. Lett. 41 064201
[38] Klinder J, Kebler H, Wolke M, Mathey L and Hemmerich A 2015 PNAS 112 3290
[39] Landini M, Dogra N, Kroeger K, Hruby L, Donner T and Esslinger T 2018 Phys. Rev. Lett. 120 223602
[40] Morales A, Dreon D, Li X, Baumgärtner A, Zupancic P, Donner T and Esslinger T 2019 Phys. Rev. A 100 013816
[41] Zhai H 2021 A Single Atom (Cambridge University Press) pp. 3–30
[42] Piazza F and Ritsch H 2015 Phys. Rev. Lett. 115 163601
[43] Ali A, Saif F and Saito H 2022 Phys. Rev. A 105 063318
[44] Gao P, Zhou Z W, Guo G C and Luo X W 2023 Phys. Rev. A 107 023311
[45] Sachdev S 2011 Quantum Phase Transitions, 2nd edn. (Cambridge University Press)
[46] Lifshitz E and Pitaevskii L 2013 Statistical Physics: Theory of the Condensed State (Course of Theoretical Physics Vol. 9 Book 2) (Butterworth-Heinemann)
[47] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes with Source Code CD-ROM 3rd Edition: The Art of Scientific Computing (USA: Cambridge University Press) ISBN 0521884071
[48] Ali A, Saif F and Saito H 2022 Phys. Rev. A 105 063318
[49] Gao P, Zhou Z W, Guo G C and Luo X W 2023 Phys. Rev. A 107 023311
[50] Tan H, Cao R and Li Y Q 2023 Acta Phys. Sin 72 183701 (in Chinese)
[51] Fan J, Chen G and Jia S 2020 Phys. Rev. A 101 063627
[52] Keeling J, Bhaseen M J and Simons B D 2014 Phys. Rev. Lett. 112 143002
[53] Chen Y, Yu Z and Zhai H 2014 Phys. Rev. Lett. 112 143004
[54] Piazza F and Strack P 2014 Phys. Rev. Lett. 112 143003
[55] Chen Y, Zhai H and Yu Z 2015 Phys. Rev. A 91 021602
[56] Kollath C, Sheikhan A, Wolff S and Brennecke F 2016 Phys. Rev. Lett. 116 060401
[1] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[2] Observation of Josephson effect in 23Na spinor Bose-Einstein condensates
Yong Qin(秦永), Xin Wang(王鑫), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(3): 033701.
[3] Observation of momentum-induced broadening of width in narrow Feshbach resonances of ultracold 133Cs atoms
Zhennan Liu(刘震南), Hongxing Zhao(赵宏星), Yunfei Wang(王云飞), Yuqing Li(李玉清), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Peng Li(李鹏), Yongming Fu(付永明), Liantuan Xiao(肖连团), Jie Ma(马杰), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(2): 023701.
[4] Mediated interactions between two impurities immersed in a Bose-Einstein condensate
Dong-Chen Zheng(郑东琛), Chun-Rong Ye(叶春荣), Yan-Xue Lin(林燕雪), Lin Wen(文林), and Renyuan Liao(廖任远). Chin. Phys. B, 2025, 34(12): 126702.
[5] Computing the ground state solution of Bose-Einstein condensates by an energy-minimizing normalized residual network
Ren-Tao Wu(吴任涛), Ji-Dong Gao(高济东), Yu-Han Wang(王宇晗), Zhen-Wei Deng(邓振威), Ming-Jun Li(李明军), and Rong-Pei Zhang(张荣培). Chin. Phys. B, 2025, 34(10): 100305.
[6] Manipulation of gray-ring dark solitons in a two-component Bose gas with tunable soft-core interactions
Qiu-Ling He(何秋玲), Lin-Xue Wang(王林雪), Rui Jin(金瑞), Fang Wang(王芳), Ya-Jun Wang(王雅君), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2025, 34(10): 100306.
[7] Pairing transitions in a binary Bose gas
Zesheng Shen(沈泽盛) and Lan Yin(尹澜). Chin. Phys. B, 2025, 34(10): 106702.
[8] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[9] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[10] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[11] Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(10): 100303.
[12] Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2023, 32(9): 096601.
[13] Special breathing structures induced by bright solitons collision in a binary dipolar Bose-Einstein condensates
Gen Zhang(张根), Li-Zheng Lv(吕李政), Peng Gao(高鹏), and Zhan-Ying Yang(杨战营). Chin. Phys. B, 2023, 32(11): 110303.
[14] Ground-state phase diagram, symmetries, excitation spectra and finite-frequency scaling of the two-mode quantum Rabi model
Yue Chen(陈越), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2023, 32(10): 104213.
[15] Mode dynamics of Bose-Einstein condensates in a single-well potential
Yaojun Ying(应耀俊), Lizhen Sun(孙李真), and Haibin Li(李海彬). Chin. Phys. B, 2023, 32(10): 100310.
No Suggested Reading articles found!