Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117502    DOI: 10.1088/1674-1056/ae0c7c
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

Accurate quantum critical points and nonlocal string order parameters in the spin tetrahedron chain

Zhi-Yong Wu(吴志勇), Kai-Ming Zhang(张凯铭), and Li-Xiang Cen(岑理相)†
Center of Theoretical Physics, College of Physics, Sichuan University, Chengdu 610065, China
Abstract  The ground-state phase diagram and nonlocal order parameters of an infinite spin tetrahedron chain with inhomogeneous exchange couplings are investigated. It is shown that the phase boundaries of the three phases in the model can be determined precisely, in line with the precision of its ground-state energy. Numerical calculations using the regularized time-evolving block decimation (rTEBD) algorithm yield the locations of the two quantum critical points with an accuracy about 10 digits. Moreover, we explain how to calculate the parity-associated string order for the output wave function obtained through the rTEBD procedure, which not only reveals the presence of long-range correlations but also identifies the symmetry-protected topological order within the intermediate phase of the model.
Keywords:  quantum phase transition      time-evolving block decimation algorithm      string order  
Received:  16 July 2025      Revised:  25 September 2025      Accepted manuscript online:  29 September 2025
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
  64.70.Tg (Quantum phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12471443).
Corresponding Authors:  Li-Xiang Cen     E-mail:  lixiangcen@scu.edu.cn

Cite this article: 

Zhi-Yong Wu(吴志勇), Kai-Ming Zhang(张凯铭), and Li-Xiang Cen(岑理相) Accurate quantum critical points and nonlocal string order parameters in the spin tetrahedron chain 2025 Chin. Phys. B 34 117502

[1] Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[2] Carr L D E 2010 Understanding Quantum Phase Transitions (Boca Raton: Taylor and Francis)
[3] Sadler L E, Higbie J M, Leslie S R, Vengalattore M and Stamper-Kurn D M 2006 Nature 443 312
[4] Lian H L 2012 Chin. Phys. C 36 479
[5] Dag C B, Wang Y, Uhrich P, Na X and Halimeh J C 2023 Phys. Rev. B 107 L121113
[6] Heyl M, Polkovnikov A and Kehrein S 2013 Phys. Rev. Lett. 110 135704
[7] Gorin T, Prosen T, Seligman T H and Znidaric M 2006 Phys. Rep. 435 33
[8] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[9] Jafari R and Johannesson H 2017 Phys. Rev. Lett. 118 015701
[10] Fernández-Lorenzo S and Porras D 2017 Phys. Rev. A 96 013817
[11] Rams M M, Sierant P, Dutta O, Horodecki P and Zakrzewski J 2018 Phys. Rev. X 8 021022
[12] Heugel T L, Biondi M, Zilberberg O and Chitra R 2019 Phys. Rev. Lett. 123 173601
[13] Garbe L, Bina M, Keller A, Paris M G A and Felicetti S 2020 Phys. Rev. Lett. 124 120504
[14] Lacroix C, Mendels P and Mila F 2011 Introduction to Frustrated Magnetism (Berlin: Springer)
[15] Balents L 2010 Nature 464 199
[16] Marić V, Giampaolo S M and Franchini F 2022 Phys. Rev. B 105 064408
[17] Ghosh S, Singh R R P and Kumar M 2025 Phys. Rev. B 111 045115
[18] Nersesyan A A, Gogolin A O and Ebßler F H L 1998 Phys. Rev. Lett. 81 910
[19] Mikeska H J and Luckmann C 2008 Phys. Rev. B 77 054405
[20] Derzhko O, Krokhmalskii T and Richter J 2010 Phys. Rev. B 82 214412
[21] Furuya S C and Giamarchi T 2014 Phys. Rev. B 89 205131
[22] Maiti D, Dey D and Kumar M 2018 J. Mag. Mag. Mater. 446 170
[23] Kolezhuk A K, Mikeska H J and Yamamoto S 1997 Phys. Rev. B 55 R3336
[24] Ivanov N B 2009 Condens. Matter Phys. 12 435
[25] Chandra V R, Ivanov N B and Richter J 2010 Phys. Rev. B 81 024409
[26] Jiang J J, Liu Y J, Tang F and Yang C H 2012 Phys. B 407 4810
[27] White S R 1992 Phys. Rev. Lett. 69 2863
[28] White S R 1998 Phys. Rep. 301 187
[29] Vidal G 2007 Phys. Rev. Lett. 98 070201
[30] Orus R and Vidal G 2008 Phys. Rev. B 78 155117
[31] Chen S, Wang Y, Ning W Q, Wu C and Lin H Q 2006 Phys. Rev. B 74 174424
[32] Cen L X 2022 arXiv:2208.03436v1 [cond-mat.str-el]
[33] Cen L X 2009 Phys. Rev. B 80 132405
[34] Pollmann F and Turner A M 2012 Phys. Rev. B 86 125441
[35] Pollmann F, Turner A M, Berg E and Oshikawa M 2018 Phys. Rev. B 81 064439
[36] Chen X, Gu Z C and Wen X G 2011 Phys. Rev. B 83 035107
[37] Schuch N, Pérez-García D and Cirac I 2011 Phys. Rev. B 84 165139
[38] Chen X, Gu Z C and Wen X G 2011 Phys. Rev. B 84 235128
[39] Jordan J, Orus R, Vidal G, Verstraete F and Cirac J 2008 Phys. Rev. B 101 250602
[40] Jiang H C, Weng Z Y and Xiang T 2008 Phys. Rev. Lett. 101 090603
[41] Cen L X 2018 Ann. Phys. 397 151
[42] Suzuki M 1990 Phys. Lett. A 146 319
[43] den Nijs M and Rommelse K 1989 Phys. Rev. B 40 4709
[44] Affleck I, Kennedy T, Lieb E H and Tasaki H 1987 Phys. Rev. Lett. 59 799
[45] Kennedy T and Tasaki H 1992 Phys. Rev. B 45 304
[46] Hida K 1992 Phys. Rev. B 45 2207
[47] Greiter M, Rachel S and Schuricht D 2007 Phys. Rev. B 75 060401
[48] Gong S S and Su G 2008 Phys. Rev. B 78 104416
[49] Perez-Garcia D, Wolf M M, Sanz M, Verstraete F and Cirac J I 2008 Phys. Rev. Lett. 100 167202
[50] Fu C, Zhao H, Chen Y G and Yan Y H 2021 Chin. Phys. B 30 087501
[51] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[52] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[1] Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model
Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2025, 34(8): 086401.
[2] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[3] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[4] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[5] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[6] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[7] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[8] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[9] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[10] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[11] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[12] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[13] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[14] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[15] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
No Suggested Reading articles found!