Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 084203    DOI: 10.1088/1674-1056/add24a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition

Junming Liu(刘峻铭)1,2,4, Liqiang Liu(刘励强)1,2, Lihong Hong(洪丽红)3,2,†, and Zhiyuan Li(李志远)1
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China;
2 Guangdong Jingqi Laser Technology Corporation Limited, Songshanhu, Dongguan 523808, China;
3 State Key Laboratory of Ultra-intense Laser Science and Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
4 School of Integrated Circuits, South China University of Technology, Guangzhou 510640, China
Abstract  Conventional approaches for obtaining the second and third harmonics typically employ several nonlinear crystals to generate them, which is restricted in application due to the complexity of the optical path and the bulkiness of the device. In this work, we present a comprehensive theoretical and numerical investigation of the simultaneous generation and competition between the second harmonic waves (SHW) and the third harmonic waves (THW) in a single nonlinear crystal. Through analyzing both small-signal and large-signal regimes, we reveal the complex coupling mechanisms between SHW and THW generation processes. Using periodically poled lithium niobate as an example, we demonstrate that the relative conversion efficiencies between SHW and THW can be freely adjusted by controlling the input fundamental wave power. This work provides new insights for designing efficient frequency converters capable of generating both SHW and THW outputs with controllable intensity ratios.
Keywords:  second harmonic generation      third harmonic generation      quasi-phase matching      periodically poled lithium niobate  
Received:  31 March 2025      Revised:  27 April 2025      Accepted manuscript online:  30 April 2025
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.70.Mp (Nonlinear optical crystals)  
Fund: Project supported by the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), the National Natural Science Foundation of China (Grant No. 12434016), the National Key Research and Development Program of China (Grant No. 2023YFA1406900), and the Fund of the National Postdoctoral Researcher Program (Grant No. GZB20240785).
Corresponding Authors:  Lihong Hong     E-mail:  honglihong@siom.ac.cn

Cite this article: 

Junming Liu(刘峻铭), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远) Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition 2025 Chin. Phys. B 34 084203

[1] Agrawal G 2013 Nonlinear Fiber Optics, 5th ed. (Oxford: Elsevier)
[2] Wang G, Lu J, Cui D, Xu Z, Wu Y, Fu P, Guan X and Chen C 2002 Opt. Commun. 209 481
[3] Lenhardt F, Nebel A, Knappe R, Nittmann M, Bartschke J and L’huillier J 2010 Presented at the Conference on Lasers and Electro- Optics 2010, (California: San Jose)
[4] Konforty N, Cohen M, Segal O, Plotnik Y and Segev M 2024 Light: Sci. Appl. 14 152
[5] Mu X and Ding Y 2001 Opt. Lett. 26 623
[6] Huang C and Zhu Y 2005 Phys. Status Solidi B 242 1694
[7] Feve J, Boulanger B and Guillien Y 2000 Opt. Lett. 25 1373
[8] Hsu C, Lai J, Hsu C, Huang Y, Wu K and Chou M 2019 Presented at the Conference on Nonlinear Frequency Generation and Conversion - Materials and Devices XVIII, San Francisco, CA
[9] WangW, Cong Z, Chen X, Zhang X, Qin Z, Tang G, Li N,Wang C and Lu Q 2014 Opt. Lett. 39 3706
[10] Antipov O, Kolker D, Dobrynin A, Zav’yalov A, Getmanovskiy Y, Sharkov V, Chuvakova M, Akhmathanov A and Shur V 2022 International Conference Laser Optics (ICLO) 1 1
[11] Zukauskas A, Thilmann N, Pasiskevicius V, Laurell F and Canalias C 2009 Appl. Phys. Lett. 95 191103
[12] Antipov O, Kolker D, Dobrynin A, Getmanovskii Y, Sharkov V, Chuvakova M, Akhmatkhanov A, Shur V, Shestakova I and Larin S 2022 Quantum Electron. 52 254
[13] Feng Z, Lan J, Li W, Liu X, Yu C, Li J and Liu Y 2020 Phys. Plasmas 27 023302
[14] Lu J, Surya J, Liu X, Xu Y and Tang H 2019 Opt. Lett. 44 1492
[15] Yu M, Shao L, Okawachi Y, Gaeta A, and Loncar 2020 Conference on Lasers and Electro-Optics (CLEO) STu4H 1
[16] Genier E, Grelet S, Engelsholm R, Bowen P, Moselund P, Bang O, Dudley J, and Sylvestre T 2022 Opt. Lett. 47 2064
[17] Hong L, Hu C, Liu Y, He H, Liu L, Wei Z and Li Z 2023 PhotoniX 4 11
[18] Chen B, Zhang C, Hu C, Liu R and Li Z 2015 Phys. Rev. Lett. 115 083902
[19] Giordmaine J 1962 Phys. Rev. Lett. 8 19
[20] Maker P, Terhune R, Nisenoff M and Savage C 1962 Phys. Rev. Lett. 8 21
[21] Zhang X, Wang Z, Wang G, Zhu Y, Xu Z and Chen C 2009 Opt. Lett. 34 1342
[22] Armstrong J, Bloembergen N, Ducuing J and Pershan P 1962 Phys. Rev. 127 1918
[23] Fejer M, Magel G, Jundt D and Byer R 1992 IEEE J. Quantum Electron. 28 2631
[24] Ren M and Li Z 2011 Europhys. Lett. 94 44003
[25] Demkin A, Baranov A, Ahtyamov V and Myasnikov D 2016 Presented at the 2016 International Conference Laser Optics (LO)
[26] Chen Y, Zhu Y, Qin Y, Zhang C, Zhu S and Ming N 2000 J. Phys.: Condens. Matter 12 529
[27] Chen B, Ren M, Liu R, Zhang C, Sheng Y, Ma B and Li Z 2014 Light: Sci. Appl. 3 e189
[28] Tao Y, Zhu W, Zhang Y, Ma J, Wang J, Yuan P, Zhang H, Zhu H and Qian L 2024 Chin. Opt. Lett. 22 011901
[29] Li M, Hong L and Li Z 2022 Research 2022 9871729
[30] Chen B, Hong L, Hu C and Li Z 2021 Research 2021 1539730
[31] Shen Y 1977 Nonlinear Infrared Generation (Berlin: Springer)
[32] Hu C, He H, Chen B, Wei Z and Li Z 2017 J. Appl. Phys. 122 243105
[33] Hong L, Chen B, Hu C and Li Z 2021 J. Appl. Phys. 129 233101
[34] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343
[1] Strain modulation of second harmonic generation in new tetrahedral transition metal dichalcogenide monolayers
Hu Chen(陈虎), Shi-Qi Li(李仕琪), Yuqing Wu(吴雨晴), Xiaozhendong Bao(鲍晓振东), Zhijie Lei(雷志杰), Hongsheng Liu(柳洪盛), Yuee Xie(谢月娥), Junfeng Gao(高峻峰), Yuanping Chen(陈元平), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2025, 34(8): 084206.
[2] Heterogeneous integration of silicon nitride photonics and CVD-grown WS2 for second harmonic generation
Xuhang Jia(贾旭航), Bangren Xu(许邦仁), Jieyi Luo(罗劼舣), Ning Liu(刘宁), Yuhang Wang(王宇航), Biyuan Zheng(郑弼元), Wei Xu(徐威), and Ken Liu(刘肯). Chin. Phys. B, 2025, 34(7): 074205.
[3] Nonlinear Raman-Nath diffraction of inclined femtosecond laser by periodically poled lithium niobate nonlinear grating
Jiacheng Li(李嘉诚), Lihong Hong(洪丽红), Yu Zou(邹娱), Jianluo Chen(陈健洛), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2025, 34(5): 054205.
[4] Symmetry-protected and Brillouin zone folding driven bound states in the continuum in dielectric nanorod arrays for efficient third harmonic generation
Wen-Jing Wang(王文静), Shi-Jie Liang(梁世杰), Jia-Qi Zou(邹家祺), Yan-Yan Huo(霍燕燕), and Ting-Yin Ning(宁廷银). Chin. Phys. B, 2025, 34(3): 034202.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[7] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[8] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[9] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[10] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[11] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[12] Analysis of third and one-third harmonic generation in lossy waveguides
Jianyu Zhang(张剑宇), Yunxu Sun(孙云旭), Qinghai Song(宋清海). Chin. Phys. B, 2019, 28(6): 064206.
[13] Generation of femtosecond laser pulses at 263 nm by K3B6O10Cl crystal
Ning-Hua Zhang(张宁华), Shao-Bo Fang(方少波), Peng He(何鹏), Hang-Dong Huang(黄杭东), Jiang-Feng Zhu(朱江峰), Wen-Long Tian(田文龙), Hong-Ping Wu(吴红萍), Shi-Lie Pan(潘世烈), Hao Teng(滕浩), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2017, 26(6): 064208.
[14] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
[15] Second harmonic generation of metal nanoparticles under tightly focused illumination
Jing-Wei Sun(孙经纬), Xiang-Hui Wang(王湘晖), Sheng-Jiang Chang(常胜江),Ming Zeng(曾明), Na Zhang(张娜). Chin. Phys. B, 2016, 25(3): 037803.
No Suggested Reading articles found!