Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088707    DOI: 10.1088/1674-1056/adbed9
Special Issue:
SPECIAL TOPIC — A celebration of the 90th Anniversary of the Birth of Bolin Hao Prev   Next  

Reconfiguration of B-DNA structure induced by ethanol

Yue Huang(黄悦)†, Yipeng Chen(陈以鹏)†, Jing Li(李静), Rongri Tan(谈荣日)‡, and Huanhuan Qiu(邱环环)§
Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330038, China
Abstract  Solution environment can influence the flexible structure of DNA under specific conditions, thereby affecting the stability of nucleic acids and ultimately impacting critical biological processes such as replication and transcription. Intracellular solution environment is variable, and previous studies have demonstrated that it can enhance the stability of DNA structures under certain circumstances. In this work, molecular dynamics simulations were conducted on B-DNA (1ZEW, with a nucleotide sequence of CCTCTAGAGG) derived from human breast cancer cells (MDA-MB231) to explore the effects of ethanol solution on DNA configuration transformation at different temperatures and concentrations. The calculated results indicate that ethanol facilitates the transition of 1ZEW from B-DNA to A-DNA at lower temperature. Furthermore, it is observed that temperature affects DNA structure to some extent, thereby modifying the trend in DNA configuration transformation. At low temperatures, the ethanol can promote the transformation of B-DNA into A-DNA at higher concentrations. While at higher temperatures, the DNA could be in a state of thermal melting. These conclusions presented here can give valuable insights into how ethanol affects B-DNA configuration transformations.
Keywords:  ethanol      molecular dynamic simulation      DNA configuration  
Received:  11 November 2024      Revised:  13 February 2025      Accepted manuscript online:  11 March 2025
PACS:  87.14.gk (DNA)  
  87.15.ap (Molecular dynamics simulation)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.15.hp (Conformational changes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52073128 and 11964012) and the Foundation of Educational Committee of Jiangxi Province of China (Grant No. GJJ2201314).
Corresponding Authors:  Rongri Tan, Huanhuan Qiu     E-mail:  rogertanr@hotmail.com;qiu.hhhh@126.com

Cite this article: 

Yue Huang(黄悦), Yipeng Chen(陈以鹏), Jing Li(李静), Rongri Tan(谈荣日), and Huanhuan Qiu(邱环环) Reconfiguration of B-DNA structure induced by ethanol 2025 Chin. Phys. B 34 088707

[1] Mukherjee S K, Gautam S, Biswas S, Kundu J and Chowdhury P K 2015 J. Phys. Chem. B 119 14145
[2] Sarkar M, Li C and Pielak G J 2013 Biophys. Rev. 5 187
[3] Buldyrev S, Goldberger A, Havlin S, Mantegna R, Matsa M, Peng C K, Simons M and Stanley H 1995 Phys. Rev. E 51 5084
[4] Richter K, Nessling M and Lichter P 2007 J. Cell. Sci. 120 1673
[5] Richter K, Nessling M and Lichter P 2008 BBA Mol. Cell Res. 1783 2100
[6] Akabayov B and Richardson C C 2012 Biophys. J. 102 281
[7] Norred S E, Caveney P M, Chauhan G, Collier L K, Collier C P, Abel S M and Simpson M L 2018 ACS Synth. Biol. 7 1251
[8] Kong J W, Dou S X, Li W, Li H and Wang P Y 2023 Chin. Phys. Lett. 40 078701
[9] Zhang S H, Niu X Z, Wang X Z, Qu C, An H L, Zhao T J and Zhan Y 2023 Chin. Phys. B 32 050504
[10] Putzel G G, Tagliazucchi M and Szleifer I 2014 Phys. Rev. Lett. 113 138302
[11] Wang F, Baquero D P, Beltran L C, Su Z, Osinski T, Zheng W, Prangishvili D, Krupovic M and Egelman E H 2020 Proc. Natl. Acad. Sci. USA 117 19643
[12] Castaneda N, Lee M, Rivera-Jacquez H J, Marracino R R, Merlino T R and Kang H 2019 J. Phys. Chem. B 123 2770
[13] Lai C T and Schatz G C 2018 J. Phys. Chem. B 122 7990
[14] Yao F, Peng X, Su Z, Tian L, Guo Y and Kang X f 2020 Anal. Chem. 92 3827
[15] Ghosh S, Takahashi S, Ohyama T, Endoh T, Tateishi-Karimata H and Sugimoto N 2020 Proc. Natl. Acad. Sci. USA 117 14194
[16] Shet S M, Bharadwaj P, Bisht M, PereiraM M, Thayallath S K, Lokesh V, Franklin G, Kotrappanavar N S and Mondal D 2022 Int. J. Biol. Macromol. 215 184
[17] Deng Z, Prem C and Fenfei L 2023 J. Biol. Chem. 299 105439
[18] Kumar J A, Rakesh S, Preeti P and Pradipta B 2018 Plos One 13 e0206359
[19] Zhang N, Li M R, Xu H T and Zhang F S 2020 Chin. Phys. Lett. 37 088701
[20] Shim A R, Nap R J, Huang K, Almassalha L M, Matusda H, Backman V and Szleifer I 2020 Biophys. J. 118 2117
[21] Khoshbin Z, Housaindokht M R, Izadyar M, Bozorgmehr M R and Verdian A 2020 Mol. Simul. 46 592
[22] Hong F, Schreck J S and Sulc P 2020 Nucleic Acids Res. 48 10726
[23] Xue J J, Li X P, Tan R R and Zong W J 2022 Chin. Phys. B 31 048702
[24] Xue J, Wang P, Li X, Tan R and Zong W 2022 Biophys. Chem. 288 106845
[25] Hays F A, Teegarden A, Jones Z J, Harms M, Raup D, Watson J, Cavaliere E and Ho P S 2005 Proc. Natl. Acad. Sci. USA 102 7157
[26] Li J, Xie S, Zhang B, He W, Zhang Y, Wang J and Yang L 2024 Crit. Rev. Eukaryot. Gene. Expr. 34 11
[27] Mondal S, Mondal T K, Rajesh Y, Mandal M and Sinha C 2018 Polyhedron 151 344
[28] Mark P and Nilsson L 2002 J. Phys. Chem. B 106 9440
[29] Berendsen H J, Grigera J R and Straatsma T P 1987 J. Phys. Chem. C 91 6269
[30] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 Softw. X 1–2 19
[31] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins 78 1950
[32] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 99 10089
[33] Lavery R, Moakher M, Maddocks J H, Petkeviciute D and Zakrzewska K 2009 Nucleic Acids Res. 37 5917
[34] Li S, Olson W K and Lu X J 2019 Nucleic Acids Res. 47 W26
[35] Markham N R and Zuker M 2005 Nucleic Acids Res. 33 W577
[36] Calladine C 1982 J. Mol. Biol. 161 343
[37] Stofer E and Lavery R 1994 Biopolymers 34 337
[38] El Hassan M and Calladine C 1998 J. Mol. Biol. 282 331
[39] Zhang H, Fu H, Shao X, Dehez F, Chipot C and Cai W 2019 J. Chem. Inf. Model. 59 2324
[40] Messelson M 1958 Proc. Natl. Acad. Sci. USA 44 671
[41] Mergny J L and Lacroix L 2003 Oligonucleotides 13 515
[42] Steiner T 2002 Angew. Chem. Int. Ed. 41 48
[43] Tolokh I S, Pabit S A, Katz A M, Chen Y, Drozdetski A, Baker N, Pollack L and Onufriev A V 2014 Nucleic Acids Res. 42 10823
[44] Kirkwood J G and Boggs E M 1942 J. Chem. Phys. 10 394
[45] Wu Y Y, Zhang Z L, Zhang J S, Zhu X L and Tan Z J 2015 Nucleic Acids Res. 43 6156
[1] Stable nanobubbles on ordered water monolayer near ionic model surfaces
Luyao Huang(黄璐瑶), Cheng Ling(凌澄), Limin Zhou(周利民), Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Lijuan Zhang(张立娟), Phornphimon Maitarad, Dengsong Zhang(张登松), and Chunlei Wang(王春雷). Chin. Phys. B, 2025, 34(1): 014701.
[2] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[3] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[4] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[5] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[6] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
[7] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[8] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[9] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[10] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[11] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[12] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[13] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
[14] Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments
Wenjun Yan(闫文君), Xiaomin Zeng(曾小敏), Huan Liu(刘欢), Chunwei Guo(郭春伟), Min Ling(凌敏), Houpan Zhou(周后盘). Chin. Phys. B, 2019, 28(10): 106801.
[15] Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation
Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋). Chin. Phys. B, 2017, 26(6): 067101.
No Suggested Reading articles found!