Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040502    DOI: 10.1088/1674-1056/adb268
GENERAL Prev   Next  

Study and circuit design of stochastic resonance system based on memristor chaos induction

Qi Liang(梁琦), Wen-Xin Yu(于文新)†, and Qiu-Mei Xiao(肖求美)
School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411100, China
Abstract  Memristor chaotic research has become a hotspot in the academic world. However, there is little exploration combining memristor and stochastic resonance, and the correlation research between chaos and stochastic resonance is still in the preliminary stage. In this paper, we focus on the stochastic resonance induced by memristor chaos, which enhances the dynamics of chaotic systems through the introduction of memristor and induces memristor stochastic resonance under certain conditions. First, the memristor chaos model is constructed, and the memristor stochastic resonance model is constructed by adjusting the parameters of the memristor chaos model. Second, the combination of dynamic analysis and experimental verification is used to analyze the memristor stochastic resonance and to investigate the trend of the output signal of the system under different amplitudes of the input signal. Finally, the practicality and reliability of the constructed model are further verified through the design and testing of the analog circuit, which provides strong support for the practical application of the memristor chaos-induced stochastic resonance model.
Keywords:  memristor      chaos      stochastic resonance      circuits  
Received:  01 December 2024      Revised:  14 January 2025      Accepted manuscript online:  05 February 2025
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.20.Dd (Kinetic theory)  
  05.20.Gg (Classical ensemble theory)  
Corresponding Authors:  Wen-Xin Yu     E-mail:  13874894700@163.com

Cite this article: 

Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美) Study and circuit design of stochastic resonance system based on memristor chaos induction 2025 Chin. Phys. B 34 040502

[1] Tian H, Zhao M, Liu J, Wang Q, Yu X and Wang Z 2024 Fractal Fractional 8 307
[2] Li H, Yang Y, Li W, He S and Li C 2020 Eur. Phys. J. Plus 135 80
[3] Xu B, Wang G, Iu H H, Yu S and Yuan F 2019 Nonlinear Dynam. 96 765
[4] Shamsher U, Jiangbin Z, Nizamud D, Tanveer H M, Farhan U and Mahwish Y 2023 Comput. Sci. Rev. 47 100530
[5] Ramesh R, Karthikeyan R, Dolvis G L, Ondrej K, Hamidreza N and Iqtadar H 2022 Chaos Soliton. Fract. 156 111834
[6] Li C, Min F H and Li C B 2018 Nonlinear Dynam. 94 2785
[7] Jia S H, Li Y X, Shi Q Y and Huang X 2022 Chin. Phys. B 31 070505
[8] Zhang F F, Huang Z, Kou L, Li Y and Cao M Y 2023 Chin. Phys. B 32 010502
[9] Wang S M, Peng Q Q and Du B X 2022 Opt. Laser Technol. 148 107753
[10] Yu J, Zeng F, Wan Q, Lu Z and Pan F 2023 InfoMat 5 e12458
[11] Suo J, Wang H Y, Yan Y S and Shen X H 2024 Nonlinear Dynam. 113 5193
[12] Cui T H, Li J, Yuan Q, Wei Y Q, Dai S Q, Li P D, Zhou F, Zhang J Q, Chen L and Feng M 2023 Chin. Phys. Lett. 40 080501
[13] Jiao S, Hou T, Jiao T Y, Wang Y and Song N L 2024 Chin. J. Phys. 91 220
[14] Wang X, Xiong X, Li C, Wu B and Niu L 2024 Chin. J. Phys. 91 11
[15] Dai F, Chen J, Liu C, Chen Z and Peng D 2024 Measurement 237 115183
[16] López C, Naranjo á, Lu S and Moore K J 2022 J. Sound Vib. 528 116890
[17] Jiang Z, Zhang G and Gao Y 2025 Appl. Math. Model. 137 115657
[18] Zhou Z B and Yu W X 2022 Int. J. Bifurcat. Chaos 32 2250154
[19] Chua L 2015 Radioengineering 24 319
[20] Sun S Z, Li J P and Li X Y 2023 J. Lanzhou University (Natural Sciences) 59 387
[1] Adaptive multi-stable stochastic resonance assisted by neural network and physical supervision
Xucan Li(李栩灿), Deming Nie(聂德明), Ming Xu(徐明), and Kai Zhang(张凯). Chin. Phys. B, 2025, 34(5): 050203.
[2] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[3] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[4] Model-free prediction of chaotic dynamics with parameter-aware reservoir computing
Jianmin Guo(郭建敏), Yao Du(杜瑶), Haibo Luo(罗海波), Xuan Wang(王晅), Yizhen Yu(于一真), and Xingang Wang(王新刚). Chin. Phys. B, 2025, 34(4): 040505.
[5] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[6] Impact of the chaotic semiconductor laser output power on time-delay-signature of chaos and random bit generation
Chenpeng Xue(薛琛鹏), Xu Wang(王绪), Likai Zheng(郑利凯), Haoyu Zhang(张昊宇), Yanhua Hong, and Zuxing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 030504.
[7] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[8] In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090310.
[9] Dynamic properties of rumor propagation model induced by Lévy noise on social networks
Ying Jing(景颖), Youguo Wang(王友国), Qiqing Zhai(翟其清), and Xianli Sun(孙先莉). Chin. Phys. B, 2024, 33(9): 090203.
[10] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[11] Performance enhancement of a viscoelastic bistable energy harvester using time-delayed feedback control
Mei-Ling Huang(黄美玲), Yong-Ge Yang(杨勇歌), and Yang Liu(刘洋). Chin. Phys. B, 2024, 33(6): 060203.
[12] Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
Ling Xu(徐玲) and Lei Jiang(姜磊). Chin. Phys. B, 2024, 33(6): 060503.
[13] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
[14] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[15] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
No Suggested Reading articles found!