Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020303    DOI: 10.1088/1674-1056/ad99ca
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Quantum-enhanced interferometry with unbalanced entangled coherent states

Jun Tang(汤俊)1, Zi-Hang Du(堵子航)1, Wei Zhong(钟伟)1,†, Lan Zhou(周澜)2, and Yu-Bo Sheng(盛宇波)3
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states (ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter (BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information (QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy.
Keywords:  quantum-enhanced interferometry      entangled coherent state      quantum Fisher information  
Received:  11 September 2024      Revised:  13 November 2024      Accepted manuscript online:  03 December 2024
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.-p (Quantum optics)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12005106) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. JSCX23-0260). Y. B. S. acknowledges support from the National Natural Science Foundation of China (Grant No. 11974189). L. Z. acknowledges support from the National Natural Science Foundation of China (Grant No. 12175106).
Corresponding Authors:  Wei Zhong     E-mail:  zhongwei1118@gmail.com

Cite this article: 

Jun Tang(汤俊), Zi-Hang Du(堵子航), Wei Zhong(钟伟), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波) Quantum-enhanced interferometry with unbalanced entangled coherent states 2025 Chin. Phys. B 34 020303

[1] Rarity J G, Tapster P R, Jakeman E, Larchuk T, Campos R A, Teich M C and Saleh B E A 1990 Phys. Rev. Lett. 65 1348
[2] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[3] Walther P, Pan JW, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
[4] Wei C Q, Liu J B, Dong Y F, Sun Y N, Zhou Y, Zheng H B, Liu Y Y, Yan X S, Li F L and Xu Z 2024 Chin. Phys. B 33 034203
[5] Liu H L, Wang M J, Bao J X, Liu C, Li Y, Li S J and Wang H 2022 Chin. Phys. B 31 110306
[6] Tse M, et al. 2019 Phys. Rev. Lett. 123 231107
[7] Acernese F, et al. (Virgo Collaboration) 2019 Phys. Rev. Lett. 123 231108
[8] Gault W and Shepherd G 1982 Advances in Space Research 2 111
[9] Lu T L, Yuan H, Kong L Q, Zhao Y J, Zhang L L and Zhang C L 2016 Chin. Phys. B 25 080702
[10] Wineland D J, Bollinger J J, Itano W M and Heinzen D J1994 Phys. Rev. A 50 67
[11] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
[12] Afek I, Ambar O and Silberberg Y 2010 Science 328 879
[13] Namkung M, Kim D H, Hong S, Kim Y S, Lee C and Lim H T 2024 New J. Phys. 26 073028
[14] Caves C M 1981 Phys. Rev. D 23 1693
[15] Xiao M, Wu L A and Kimble H J 1987 Phys. Rev. Lett. 59 278
[16] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[17] Tan Q S, Liao J Q,Wang X G and Nori F 2014 Phys. Rev. A 89 053822
[18] Carranza R and Gerry C C 2012 J. Opt. Soc. Am. B 29 2581
[19] Wang S, Zhang J and Xu X 2022 Opt. Commun. 505 127592
[20] Xu J H, Wang J Z, Chen A X, Li Y and Jin G R 2019 Chin. Phys. B 28 120303
[21] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[22] Chen X T, Zhang R, Lu W J, Zuo Y, Jiao Y F and Kuang L M 2024 Phys. Rev. A 109 042609
[23] Sanders B C 2012 J. Phys. A: Math. Theor. 45 244002
[24] Luis A 2001 Phys. Rev. A 64 054102
[25] Jing X X, Liu J, Zhong W and Wang X G 2014 Commun. Theor. Phys. 61 115
[26] Zhang Y M, Li XW, YangWand Jin G R2013 Phys. Rev. A 88 043832
[27] Huang W, Liang X, Zhu B, Yan Y, Yuan C H, Zhang W and Chen L Q 2023 Phys. Rev. Lett. 130 073601
[28] Wu S, Zhang D, Li Z, Shi M, Yang P, Guo J, Du W, Bao G and Zhang W 2023 Phys. Rev. Appl. 20 064028
[29] Ataman S 2022 Phys. Rev. A 105 012604
[30] Liu Y J, Wang M Y, Xiang Z C and Wu H B 2022 Chin. Phys. B 31 110305
[31] Helstrom C W 1976 Quantum Detection and Estimation Theory (Academic, New York)
[32] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam)
[33] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[34] Paris M A T T E O G A 2009 Int. J. Quantum Inform. 07 125
[35] Zhong W, Lu X M, Jing X X and Wang X G 2014 J. Phys. A: Math. Theor. 47 385304
[36] Takase K, Yoshikawa J i, Asavanant W, Endo M and Furusawa A 2021 Phys. Rev. A 103 013710
[37] Wang X, Zhan X, Li Y, Xiao L, Zhu G, Qu D, Lin Q, Yu Y and Xue P 2023 Phys. Rev. Lett. 131 150803
[38] García-Pérez G, Rossi M A, Sokolov B, Tacchino F, Barkoutsos P K, Mazzola G, Tavernelli I and Maniscalco S 2021 PRX Quantum 2 040342
[39] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A2009 Phys. Rev. Lett. 102 040403
[40] Demkowicz-Dobrzanski R, Dorner U, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. A 80 013825
[41] Joo J, Park K, Jeong H, Munro W J, Nemoto K and Spiller T P 2012 Phys. Rev. A 86 043828
[42] Braunstein S L, Caves C M and Milburn G 1996 Annals of Physics 247 135
[43] Ataman S 2020 Phys. Rev. A 102 013704
[44] Bai K, Peng Z, Luo H G and An J H 2019 Phys. Rev. Lett. 123 040402
[45] van Enk S J 2005 Phys. Rev. A 72 022308
[46] Pegg D T, Phillips L S and Barnett S M 1998 Phys. Rev. Lett. 81 1604
[47] Ralph T C and Lund A P 2009 Proceedings of 9th International Conference, edited by A. Lvovsky (AIP, New York) pp. 155-160
[48] Wen J, Novikova I, Qian C, Zhang C and Du S 2021 Photonics 8
[49] Jeong H, Zavatta A, Kang M, Lee S W, Costanzo L S, Grandi S, Ralph T C and Bellini M 2014 Nat. Photon. 8 564
[50] Xiang G Y, Ralph T C, Lund A P, Walk N and Pryde G J 2010 Nat. Photon. 4 316
[51] Zhang S, Yang S, Zou X, Shi B and Guo G 2012 Phys. Rev. A 86 034302
[52] Monteiro F, Verbanis E, Vivoli V C, Martin A, Gisin N, Zbinden H and Thew R T 2017 Quantum Science and Technology 2 024008
[53] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[1] Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir
Yan-Ling Li(李艳玲), Cai-Hong Liao(廖彩红), and Xing Xiao(肖兴). Chin. Phys. B, 2025, 34(1): 010307.
[2] Improving cutoff frequency estimation via optimized π-pulse sequence
Wang-Sheng Zheng(郑王升), Chen-Xia Zhang(张晨霞), and Bei-Li Gong(龚贝利). Chin. Phys. B, 2025, 34(1): 010309.
[3] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[4] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[5] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[6] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[7] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[8] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[9] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[10] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[11] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[12] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[13] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[14] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[15] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
No Suggested Reading articles found!