Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 016801    DOI: 10.1088/1674-1056/ad8fa1
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev  

Emergent 3×3 charge order on the Cs reconstruction of kagome superconductor CsV3Sb5

Xianghe Han(韩相和)1,2, Zhongyi Cao(曹钟一)1,2, Zihao Huang(黄子豪)1,2, Zhen Zhao(赵振)1,2, Haitao Yang(杨海涛)1,2,3, Hui Chen(陈辉)1,2,3,‡, and Hong-Jun Gao(高鸿钧)1,2,3,†
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hefei National Laboratory, Hefei 230088, China
Abstract  The alkali adatoms with controlled coverage on the surface have been demonstrated to effectively tune the surface band of quantum materials through in situ electron doping. However, the interplay of orderly arranged alkali adatoms with the surface states of quantum materials remains unexplored. Here, by using low-temperature scanning tunneling microscopy/spectroscopy (STM/S), we observed the emergent 3$\times$3 super modulation of electronic states on the $\sqrt 3\times\sqrt 3R30^\circ$ (R3) Cs ordered surface of kagome superconductor CsV$_{3}$Sb$_{5}$. The nondispersive 3$\times$3 superlattice at R3 ordered surface shows contrast inversion in positive and negative differential conductance maps, indicating a charge order origin. The 3$\times$3 charge order is suppressed with increasing temperature and undetectable at a critical temperature of $\sim 62$ K. Furthermore, in the Ta substituted sample CsV$_{2.6}$Ta$_{0.4}$Sb$_{5}$, where long-range 2$\times$2$\times$2 charge density wave is significantly suppressed, the 3$\times$3 charge order on the R3 ordered surface becomes blurred and much weaker than that in the undoped sample. It indicates that the 3$\times$3 charge order on the R3 ordered surface is directly correlated to the bulk charge density waves in CsV$_{3}$Sb$_{5}$. Our work provides a new platform for understanding and manipulating the cascade of charge orders in kagome superconductors.
Keywords:  CsV$_{3}$Sb$_{5}$      surface reconstruction      alkali atoms      charge order      scanning tunneling microscope/spectroscopy  
Received:  28 September 2024      Revised:  02 November 2024      Accepted manuscript online:  07 November 2024
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.37.Ps (Atomic force microscopy (AFM))  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Fund: Project supported by the National Key Research and Development Project of China (Grant Nos. 2022YFA1204100 and 2019YFA0308500), the National Natural Science Foundation of China (Grant No. 62488201), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Corresponding Authors:  Hong-Jun Gao, Hui Chen     E-mail:  hjgao@iphy.ac.cn;hchenn04@iphy.ac.cn

Cite this article: 

Xianghe Han(韩相和), Zhongyi Cao(曹钟一), Zihao Huang(黄子豪), Zhen Zhao(赵振), Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧) Emergent 3×3 charge order on the Cs reconstruction of kagome superconductor CsV3Sb5 2025 Chin. Phys. B 34 016801

[1] Starnberg H I, Brauer H E, Holleboom L J and Hughes H P 1993 Phys. Rev. Lett. 70 3111
[2] Adelung R, Brandt J, Rossnagel K, Seifarth O, Kipp L, Skibowski P, Ramírez C, Strasser T and Schattke W 2001 Phys. Rev. Lett. 86 1303
[3] Schmidt P, Murphy B, Kröger J, Jensen H and Berndt R 2006 Phys. Rev. B 74 193407
[4] Lee J, Jin K H and Yeom H W 2021 Phys. Rev. Lett. 126 196405
[5] Miyata Y, Nakayama K, Sugawara K, Sato T and Takahashi T 2015 Nat. Mater. 14 775
[6] Seo J J, Kim B Y, Kim B S, Jeong J K, Ok J M, Kim J S, Denlinger J D, Mo S K, Kim C and Kim Y K 2016 Nat. Commun. 7 11116
[7] Tang C J, Liu C, Zhou G Y, Li F S, Ding H, Li Z, Zhang D, Li Z, Song C L, Ji S H, He K, Wang L L, Ma X C and Xue Q K 2016 Phys. Rev. B 93 020507
[8] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[9] Kyung W S, Huh S S, Koh Y Y, Choi K Y, Nakajima M, Eisaki H, Denlinger J D, Mo S K, Kim C and Kim Y K 2016 Nat. Mater. 15 1233
[10] Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T and Feng D L 2016 Nano Lett. 16 1969
[11] Hossain M A, Mottershead J D F, Fournier D, Bostwick A, McChesney J L, Rotenberg E, Liang R, Hardy W N, Sawatzky G A, Elfimov I S, Bonn D A and Damascelli A 2008 Nat. Phys. 4 527
[12] Fournier D, Levy G, Pennec Y, McChesney J L, Bostwick A, Rotenberg E, Liang R, Hardy W N, Bonn D A, Elfimov I S and Damascelli A 2010 Nat. Phys. 6 905
[13] Sierda E, Huang X, Badrtdinov D I, Kiraly B, Knol E J, Groenenboom G C, Katsnelson M I, Rösner M, Wegner D and Khajetoorians A A 2023 Science 380 1048
[14] Hu Q X, Yang F Z, Wang X Y, Li J J, Liu W Y, Kong L Y, Li S L, Yan L, Xu J P and Ding H 2023 Phys. Rev. Mater. 7 034801
[15] Hu B, Ye Y, Huang Z, Han X, Zhao Z, Yang H, Chen H and Gao H J 2022 Chin. Phys. B 31 058102
[16] Tan H X, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401
[17] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[18] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403
[19] Park T, Ye M X and Balents L 2021 Phys. Rev. B 104 035142
[20] Denner M M, Thomale R and Neupert T 2022 Phys. Rev. Lett. 128 099901
[21] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[22] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K and Liu M 2022 Chin. Phys. Lett. 39 047402
[23] Wu P, Tu Y B, Wang Z Y, Yu S K, Li H Y, Ma W R, Liang Z W, Zhang Y M, Zhang X C, Li Z Y, Yang Y, Qiao Z H, Ying J J, Wu T, Shan L, Xiang Z J, Wang Z Y and Chen X H 2023 Nat. Phys. 19 1143
[24] Nie L P, Sun K, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X H 2022 Nature 604 59
[25] Asaba T, Onishi A, Kageyama Y, Kiyosue T, Ohtsuka K, Suetsugu S, Kohsaka Y, Gaggl T, Kasahara Y, Murayama H, Hashimoto K, Tazai R, Kontani H, Ortiz B R, Wilson S D, Li Q, Wen H H, Shibauchi T and Matsuda Y 2024 Nat. Phys. 20 40
[26] Yang H, Ye Y, Zhao Z, Liu J, Yi X W, Zhang Y, Shi J, You J Y, Huang Z,Wang B,Wang J, Guo H, Lin X, Shen C, ZhouW, Chen H, Dong X, Su G, Wang Z and Gao H J 2024 Nat. Commun. 15 9626
[27] Hu Y, Le C C, Zhang Y H, Zhao Z, Liu J L, Ma J Z, Plumb N C, Radovic M, Chen H, Schnyder A P, Wu X X, Dong X L, Hu J P, Yang H T, Gao H J and Shi M 2023 Nat. Phys. 19 1827
[28] Li H, Zhao H, Ortiz B R, Park T, Ye M X, Balents L, Wang Z Q, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265
[29] Li H, Zhao H, Ortiz B R, Oey Y, Wang Z Q, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 637
[30] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222
[31] Zhou S and Wang Z 2022 Nat. Commun. 13 7288
[32] Chen H and Gao H J 2023 Nature 618 910
[33] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405
[34] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[35] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J and Zhao Z X 2021 Chin. Phys. Lett. 38 057403
[36] Yang H T, Huang Z H, Zhang Y H, Zhao Z, Shi J N, Luo H L, Zhao L, Qian G J, Tan H X, Hu B, Zhu K, Lu Z Y W, Zhang H, Sun J P, Cheng J G, Shen C M, Lin X, Yan B H, Zhou X J, Wang Z Q, Pennycook S J, Chen H, Dong X L, Zhou W and Gao H J 2022 Sci. Bull. 67 2176
[37] Luo Y, Han Y L, Liu J J, Chen H, Huang Z H, Huai L W, Li H Y, Wang B Q, Shen J C, Ding S H, Li Z Y, Peng S T, Wei Z Y, Miao Y, Sun X P, Ou Z P, Xiang Z J, Hashimoto M, Lu D H, Yao Y G, Yang H T, Chen X H, Gao H J, Qiao Z H, Wang Z W and He J F 2023 Nat. Commun. 14 3819
[38] Zhao Z, Wang R, Zhang Y, Zhu K, Yu W, Han Y, Liu J, Hu G, Guo H, Lin X, Dong X, Chen H, Yang H and Gao H J 2024 Chin. Phys. B 33 077406
[39] Hu B, Chen H, Ye Y, Huang Z, Han X, Zhao Z, Xiao H, Lin X, Yang H, Wang Z and Gao H J 2024 Nat. Commun. 15 6109
[40] Huang Z H, Han X, Zhao Z, Liu J, Li P, Tan H, Wang Z, Yao Y, Yang H, Yan B, Jiang K, Hu J, Wang Z, Chen H and Gao H J 2024 Sci. Bull. 69 885
[41] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[42] Song B, Ying T, Wu X, Xia W, Yin Q, Zhang Q, Song Y, Yang X, Guo J, Gu L, Chen X, Hu J, Schnyder A P, Lei H, Guo Y and Li S 2023 Nat. Commun. 14 2492
[43] Huang Z H, Han X H, Zhao Z, Yang H T, Chen H and Gao H J 2024 Nano. Lett. 24 6023
[44] Kato T, Li Y K, Liu M, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G and Sato T 2023 Phys. Rev. B 107 245143
[45] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T and Sato T 2022 Phys. Rev. B 106 L121112
[46] Nakayama K, Li Y K, Kato T, Liu M, Wang Z W, Takahashi T, Yao Y G and Sato T 2022 Phys. Rev. X 12 011001
[47] Kato T, Nakayama K, Li Y K, Wang Z W, Sugawara K, Tanaka K, Takahashi T, Yao Y G and Sato T 2024 Adv. Sci. 11 2309003
[48] Yu J, Xu Z, Xiao K, Yuan Y, Yin Q, Hu Z, Gong C, Guo Y, Tu Z, Tang P, Lei H, Xue Q K and Li W 2022 Nano Lett. 22 918
[49] Jin F, Ren W, Tan M S, Xie M T, Lu B R, Zhang Z, Ji J T and Zhang Q M 2024 Phys. Rev. Lett. 132 066501
[50] Hardy F, Eder R, Jackson M, Aoki D, Paulsen C, Wolf T, Burger P, Böhmer A, Schweiss P, Adelmann P, Fisher R A and Meingast C 2014 J. Phys. Soc. Jpn. 83 014711
[51] Cao L, Liu W, Li G, Dai G, Zheng Q, Wang Y, Jiang K, Zhu S, Huang L, Kong L, Yang F, Wang X, Zhou W, Lin X, Hu J, Jin C, Ding H and Gao H J 2021 Nat. Commun. 12 6312
[1] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[2] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[3] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[4] Tuning charge and orbital ordering in DyNiO3 by biaxial strain
Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢). Chin. Phys. B, 2021, 30(11): 117106.
[5] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[6] Epitaxial synthesis and electronic properties of monolayer Pd2Se3
Peng Fan(范朋), Rui-Zi Zhang(张瑞梓), Jing Qi(戚竞), En Li(李恩), Guo-Jian Qian(钱国健), Hui Chen(陈辉), Dong-Fei Wang(王东飞), Qi Zheng(郑琦), Qin Wang(汪琴), Xiao Lin(林晓), Yu-Yang Zhang(张余洋), Shixuan Du(杜世萱), Hofer W A, Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(9): 098102.
[7] Intrinsic transverse relaxation mechanisms of polarized alkali atoms enclosed in radio-frequency magnetometer cell
Yang-Ying Fu(傅杨颖), Jie Yuan(袁杰). Chin. Phys. B, 2019, 28(9): 098504.
[8] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[9] Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy
Kai-Li Zhang(张凯莉), Cong-Cong Fan(樊聪聪), Wan-Ling Liu(刘万领), Yu-Feng Wu(吴宇峰), Xiang-Le Lu(卢祥乐), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Zhong-Hao Liu(刘中灏), Da-Wei Shen(沈大伟). Chin. Phys. B, 2018, 27(8): 088103.
[10] Thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl molecules on Au (110)
Junhai Ren(任俊海), Deliang Bao(包德亮), Li Dong(董立), Lei Gao(高蕾), Rongting Wu(武荣庭), Linghao Yan(闫凌昊), Aiwei Wang(王爱伟), Jiahao Yan(严佳浩), Yeliang Wang(王业亮), Shixuan Du(杜世萱), Qing Huan(郇庆), Hongjun Gao(高鸿钧). Chin. Phys. B, 2017, 26(8): 086801.
[11] Effect of charge order transition on tunneling resistance in Pr0.6Ca0.4MnO3/Nb-doped SrTiO3 heterojunction
Wang Deng-Jing (王登京), Ma Jun-Jie (马俊杰), Wang Mei (王妹), Wang Ru-Wu (汪汝武), Li Yun-Bao (李云宝). Chin. Phys. B, 2014, 23(5): 057202.
[12] Charge ordering modulations in Bi0.4Ca0.6MnO3 film with a thickness of 110 nm
Ding Yan-Hua (丁艳华), Wang Yi-Qian (王乙潜), Cai Rong-Sheng (蔡鎔声), Chen Yun-Zhong (陈允忠), Sun Ji-Rong (孙继荣 ). Chin. Phys. B, 2012, 21(8): 087502.
[13] A density-functional theory investigation on disorption of O2 on Sn(111) and its comparison with initial oxidation on the X(111) (X=Si, Ge, Sn, Pb) surfaces
Hu Zi-Yu (胡自玉), Wan Ping-Yu (万平玉), Hou Zhi-Ling (侯志灵), Shao Xiao-Hong (邵晓红). Chin. Phys. B, 2012, 21(12): 126803.
[14] Surface reconstruction on stishovite SiO2, HfO2 and rutile TiO2 (001)
Tang Fu-Ling(汤富领), Yue Rui(岳瑞), and Lu Wen-Jiang(路文江). Chin. Phys. B, 2011, 20(2): 026801.
[15] Scanning tunneling microscopy study of surface reconstruction induced by N adsorption on Cu (100) surface
Dou Wei-Dong(窦卫东), Zhang Han-Jie(张寒洁), and Bao Shi-Ning(鲍世宁). Chin. Phys. B, 2010, 19(2): 026803.
No Suggested Reading articles found!