Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100506    DOI: 10.1088/1674-1056/ac1e13
GENERAL Prev   Next  

Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors

Li-Lian Huang(黄丽莲)1,2, Shuai Liu(刘帅)1,2, Jian-Hong Xiang(项建弘)1,2,†, and Lin-Yu Wang(王霖郁)1,2
1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2 MIIT Key Laboratory of Advanced Marine Communication and Information Technology, Harbin 150001, China
Abstract  A five-value memristor model is proposed, it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current. Then, based on the classical Liu-Chen system, a new memristor-based four-dimensional (4D) chaotic system is designed by using the five-value memristor. The trajectory phase diagram, Poincare mapping, bifurcation diagram, and Lyapunov exponent spectrum are drawn by numerical simulation. It is found that, in addition to the general chaos characteristics, the system has some special phenomena, such as hidden homogenous multistabilities, hidden heterogeneous multistabilities, and hidden super-multistabilities. Finally, according to the dimensionless equation of the system, the circuit model of the system is built and simulated. The results are consistent with the numerical simulation results, which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.
Keywords:  five-valued memristor      chaotic system      hidden attractor      multistability  
Received:  09 May 2021      Revised:  19 July 2021      Accepted manuscript online:  17 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61203004), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F201220), and the Heilongjiang Provincial Natural Science Foundation of Joint Guidance Project (Grant No. LH2020F022).
Corresponding Authors:  Jian-Hong Xiang     E-mail:

Cite this article: 

Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁) Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors 2021 Chin. Phys. B 30 100506

[1] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[2] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[3] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[4] Itoh M and Chua L O 2008 Int. J. Bifurc. Chaos 18 3183
[5] Bao B C, Xu J P and Liu Z 2010 Chin. Phys. Lett. 27 070504
[6] Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502
[7] Bao B C, Liu Z and Xu J P 2010 Chin. Phys. B 19 030510
[8] Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335
[9] Liu G Z, Zheng L J, Wang G Y, Shen Y R and Liang Y 2019 IEEE Access 7 43691
[10] Chen C J, Chen J Q, Bao H, Chen M and Bao B C 2019 Nonlinear Dyn. 95 3385
[11] Ying J J, Wang G Y, Dong Y J and Yu S M 2019 Int. J. Bifurc. Chaos 29 1930030
[12] Chen J J, Yan D W, Duan S K and Wang L D 2020 Chin. Phys. B 29 110504
[13] Muthuswamy B and Kokate P P 2009 IETE Tech. Rev. 26 417
[14] Xi H L, Li Y X and Huang X 2014 Entropy 16 6240
[15] Bao B C, Jiang T, Xu Q, Chen M, Wu H G and Hu Y H 2016 Nonlinear Dyn. 86 1711
[16] Wang G Y, Yuan F, Chen G R 2018 Chaos 28 013125
[17] Zhou W, Wang G Y, Shen Y R 2018 Int. J. Bifurc. Chaos 28 1830033
[18] Zhang X, Wang C H. 2019 Int. J. Bifurc. Chaos 29 1950117
[19] Deng Q L, Wang C H and Yang L M 2020 Int. J. Bifurc. Chaos 30 2050086
[20] Yan B, He S B and Wang S J 2020 Math. Probl. Eng. 2020 2468134
[21] Gu S Q, He S B, Wang H H and Du B X 2021 Chaos, Solitons, and Fractals 143 110613
[22] Wang X Y, Zhang X and Gao M 2020 Complexity 2020 6949703
[23] Huang L L, Yao W J, Xiang J H and Zhang Z F 2020 Complexity 2020 2408460
[24] Chua L O 2011 Appl. Phys. A 102 765
[25] Chua L O 2012 Proc. IEEE 100 1920
[26] Adhikari S P, Sah M P, Kim H and Chua L O 2013 IEEE Trans. Circ. Syst. I: Reg. Papers 60 3008
[27] Liu W B and Chen G R 2003 Int. J. Bifurc. Chaos 13 261
[28] Liu W B and Chen G R 2004 Int. J. Bifurc. Chaos 14 1395
[29] Khan A and Singh S 2018 Chin. J. Phys. 56 238
[30] Gottwald G A and Melbourne I 2004 Proc. Math. Phys. Eng. Sci. 460 603
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[6] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[7] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[8] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[11] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[12] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[13] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[14] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[15] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
No Suggested Reading articles found!