CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Pseudospin-filter tunneling of massless Dirac fermions |
Zhengdong Li(李政栋) and Wen Zeng(曾文)† |
Department of Physics, Jiangsu University, Zhenjiang 212013, China |
|
|
Abstract The tunneling of the massless Dirac fermions through a vector potential barrier are theoretically investigated, where the vector potential can be introduced by very high and very thin ($\delta$-function) magnetic potential barriers. We show that, distinct from the previously studied electric barrier tunneling, the vector potential barriers are more transparent for pseudospin-1/2 Dirac fermions but more obstructive for pseudospin-1 Dirac fermions. By tuning the height of the vector potential barrier, the pseudospin-1/2 Dirac fermions remain transmitted, whereas the transmission of the pseudospin-1 Dirac fermions is forbidden, leading to a pseudospin filtering effect for massless Dirac fermions.
|
Received: 09 July 2024
Revised: 17 August 2024
Accepted manuscript online: 10 September 2024
|
PACS:
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
73.43.Jn
|
(Tunneling)
|
|
Fund: Project supported by the College Student Innovation Project (Grant No. 202310299517X) and the Scientific Research Project of Jiangsu University (Grant No. 22A716). |
Corresponding Authors:
Wen Zeng
E-mail: zeng@ujs.edu.cn
|
Cite this article:
Zhengdong Li(李政栋) and Wen Zeng(曾文) Pseudospin-filter tunneling of massless Dirac fermions 2024 Chin. Phys. B 33 117401
|
[1] Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802 [2] Jiao M Q and Li Y X 2024 Phys. Lett. A 497 129343 [3] Xu Y F, Fang Y and Jin G J 2023 New J. Phys. 25 013020 [4] Zhao J J, Liu G B, Chen P, Yao Y G, Zhang G Y and Du L J 2024 Chin. Phys. Lett. 41 066801 [5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [6] Beeler M C, Williams R A, Jiménez-García K, LeBlanc L J, Perry A R and Spielman I B 2013 Nature 498 201 [7] Wang J J, Liu S, Wang J and Liu J F 2020 Phys. Rev. B 102 235414 [8] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007 [9] Li Y Q, Chen X R, Luo W, Zhou T and Chen W 2022 Europhys. Lett. 137 36003 [10] Varlet A, Liu M H, Krueckl V, Bischoff D, Simonet P, Watanabe K, Taniguchi T, Richter K, Ensslin K and Ihn T 2014 Phys. Rev. Lett. 113 116601 [11] Mukherjee1 D K, Rao1 S and Das S 2019 J. Phys.: Condens. Matter 31 045302 [12] Wang J J and Wang J 2024 Chin. Phys. B 33 017801 [13] Martinez J C, Jalil M B A and Tan S G 2009 Appl. Phys. Lett. 95 102108 [14] Fang A, Zhang Z Q, Louie S G and Chan C T 2016 Phys. Rev. B 93 035422 [15] Shen R, Shao L B, Wang B G and Xing D Y 2010 Phys. Rev. B 81 041410 [16] Xu Y F and Jin G J 2014 Phys. Lett. A 378 3554 [17] Raoux A, Morigi M, Fuchs J N, Piéchon F and Montambaux G 2014 Phys. Rev. Lett. 112 026402 [18] Singh A and Sharma G 2023 Phys. Rev. B 107 245150 [19] Illes E and Nicol E J 2017 Phys. Rev. B 95 235432 [20] Cunha S M, da Costa D R, Milton Pereira J Jr, Costa Filho R N, Van Duppen B and Peeters F M 2021 Phys. Rev. B 104 115409 [21] Cunha S M, da Costa D R, Milton Pereira J Jr, Costa Filho R N, Van Duppen B and Peeters F M 2022 Phys. Rev. B 105 165402 [22] Korol A M, Sokolenko A I and Shevchenko O 2021 Low Temp. Phys. 47 300 [23] Sukhachov P O, Oriekhov D O and Gorbar E V 2023 Phys. Rev. B 108 075166 [24] Betancur-Ocampo Y, Cordourier-Maruri G, Gupta V and de Coss R 2017 Phys. Rev. B 96 024304 [25] Zeng W and Shen R 2022 New J. Phys. 24 043021 [26] Feng X L, Liu Y, Yu Z M, Ma Z S, Ang L K, Ang Y S and Yang S Y A 2020 Phys. Rev. B 101 235417 [27] Duan W Y 2023 Phys. Rev. B 108 155428 [28] Yang C H, Wieser R and Wang L 2020 J. Appl. Phys. 128 094301 [29] Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444 [30] Fang A, Zhang Z Q, Louie S G and Chan C T 2019 Research 2019 3054062 [31] Fan C Z, Wang J Q, He J N, Ding P and Liang E J 2013 Chin. Phys. B 22 074211 [32] Lin X, Wang H L, Pan H and Xu H Z 2011 Chin. Phys. B 20 047302 [33] Deng W Y, Zhu R, Xiao Y C and Deng W J 2014 Chin. Phys. B 23 017202 [34] Martino A D, Dell’Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802 [35] Hu X W and Cheng F 2019 Sci. Rep. 9 10947 [36] Yesilyurt C, Tan S G, Liang G and Jalil M B A 2016 Sci. Rep. 6 38862 [37] Mandal I and Sen A 2021 Phys. Lett. A 399 127293 [38] Masir M R, Vasilopoulos P and Peeters F M 2009 New J. Phys. 11 095009 [39] Zalipaev V, Linton C M, Croitoru M D and Vagov A 2015 Phys. Rev. B 91 085405 [40] Allain P E and Fuchs J N 2011 Eur. Phys. J. B 83 301 [41] Zhu R 2024 Physica B 687 416091 [42] Datta S 1992 Phys. Rev. B 45 1347 [43] Cornean H D, Jensen A and Moldoveanu V 2005 J. Math. Phys. 46 042106 [44] Pastawski H M 1991 Phys. Rev. B 44 6329 [45] Contreras-Astorga A, Correa F and Jakubský V 2020 Phys. Rev. B 102 115429 [46] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|