|
|
Anomalous spin Josephson effect in spin superconductors |
Wen Zeng(曾文)1,2,† and Rui Shen(沈瑞)3,4 |
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2 Jiangsu Engineering Research Center on Quantum Perception and Intelligent, Detection of Agricultural Information, Zhenjiang 212013, China; 3 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract The spin superconductor state is the spin-polarized triplet exciton condensate, which can be viewed as a counterpart of the charge superconductor state. As an analogy of the charge Josephson effect, the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions. Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations. For the Josephson junctions with out-of-plane spin polarizations, the possible π-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces. For the Josephson junctions with in-plane spin polarizations, the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations. The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.
|
Received: 07 November 2023
Revised: 27 December 2023
Accepted manuscript online: 29 December 2023
|
PACS:
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
73.43.Jn
|
(Tunneling)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403601). |
Corresponding Authors:
Wen Zeng
E-mail: zeng@ujs.edu.cn
|
Cite this article:
Wen Zeng(曾文) and Rui Shen(沈瑞) Anomalous spin Josephson effect in spin superconductors 2024 Chin. Phys. B 33 037401
|
[1] Jiang Z, Lou W, Liu Y, Li Y, Song H, Chang K, Duan W and Zhang S 2020 Phys. Rev. Lett. 124 166401 [2] Zhang C, Zhang W, Jia Y and Zhang Z 2021 Phys. Rev. B 104 195309 [3] Tachiya M and Seki K 2010 Phys. Rev. B 82 085201 [4] Blom p, Jong M D and Breedijk S 1997 Appl. Phys. Lett. 71 930 [5] Lozovik Y and Yudson V 1976 Solid State Communications 19 391 [6] Zhang C H and Joglekar Y N 2008 Phys. Rev. B 77 233405 [7] Seradjeh B, Weber H and Franz M 2008 Phys. Rev. Lett. 101 246404 [8] Mink M P, Stoof H T C, Duine R A and MacDonald A H 2011 Phys. Rev. B 84 155409 [9] Sun Q F, Jiang Z T, Yu Y and Xie X C 2011 Phys. Rev. B 84 214501 [10] Sun Q F and Xie X C 2013 Phys. Rev. B 87 245427 [11] Pannetier B and Courtois H 2000 Journal of Low Temperature Physics 118 599 [12] Upadhyay S K, Palanisami A, Louie R N and Buhrman R A 1998 Phys. Rev. Lett. 81 3247 [13] Jong M J M D and Beenakker C W J 1995 Phys. Rev. Lett. 73 1657 [14] Law K T, Lee P A and Ng T K 2009 Phys. Rev. Lett. 103 237001 [15] Russo S, Kroug M, Klapwijk T M and Morpurgo A F 2005 Phys. Rev. Lett. 95 027002 [16] Zeng W and Shen R 2002 Phys. Rev.B 106 094503 [17] Lv P, Guo A M, Li H, Liu C, Xie X C and Sun Q F 2017 Phys. Rev.B 95 104516 [18] Uchida M, Koretsune T, Sato S, Kriener M, Nakazawa Y, Nishi-haya S,Taguchi Y, Arita R and Kawasaki M 2019 Phys. Rev. B 100 245148 [19] Bouhadida F, Mandhour L and Charfi-Kaddour S 2020 Phys. Rev. B 102 075443 [20] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 [21] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007 [22] Gennes P G D Superconductivity of metals and alloys (Boca Raton: CRC Press) [23] Titov M and Beenakker C W J 2006 Phys. Rev. B 74 041401(R) [24] Hagymasi I, Kormanyos A and Cserti J 2010 Phys. Rev. B 82 134516 [25] Brouwer P and Beenakker C W J 1997 Chaos, Solitons & Fractals 7-8 1249 [26] Kashiwaya S and Tanaka Y 2000 Reports on Progress in Physics 10 63 [27] Floyd E R 1982 Phys. Rev. D 25 1547 [28] Konotop V V and Kevrekidis P G 2003 Phys. Rev. Lett. 91 230402 [29] Bardeen J, Kummel R, Jacobs A E and Tewordt L 1969 Phys. Rev. 187 556 [30] Beenakker C W J 1992 Phys. Rev. Lett. 67 3836 [31] Liu J F and Chan K S 2010 Phys. Rev. Lett. 82 125305 [32] Rasmussen A, Danon J, Suominen H, Nichele F, Kjaergaard M and Flensberg K 2016 Phys. Rev. B 93 155406 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|