|
|
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials |
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋)†, and Yun-Peng Wang(王云鹏)‡ |
School of Physics, Central South University, Changsha 410083, China |
|
|
Abstract Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets, which is featured by spin splitting even without the spin-orbital coupling effect. This interesting phenomenon has been discovered in more altermagnetic materials. In this work, we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets, including $M\mathrm{F_4}$ with $M$ covering all 3d and 4d transition metal elements, as well as $T\mathrm{S_2}$ with $T = {\rm V}$, Cr, Mn, Fe. Through the magnetic symmetry operation of RuF$_4$ and MnS$_2$, it is verified that breaking the time inversion is a necessary condition for spin splitting. Based on symmetry analysis and first-principles calculations, we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path. This work paves the way for exploring altermagnetism in two-dimensional materials.
|
Received: 27 June 2024
Revised: 16 July 2024
Accepted manuscript online: 17 July 2024
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
11.55.Fv
|
(Dispersion relations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004439), Hunan Province Postgraduate Research and Innovation Project (Grant No. CX20230229), and the computational resources from the High Performance Computing Center of Central South University. |
Corresponding Authors:
Meng-Qiu Long, Yun-Peng Wang
E-mail: mqlong@csu.edu.cn;yunpengwang@csu.edu.cn
|
Cite this article:
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏) Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials 2024 Chin. Phys. B 33 097507
|
[1] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453 [2] Wang Y P and Long M Q 2020 Phys. Rev. B 101 024411 [3] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [4] Cheng R, Xiao D and Zhu J G 2018 Phys. Rev. Lett. 121 207202 [5] Zhou W, Zheng G, Li A, Zhang D and Ouyang F 2023 Phys. Rev. B 107 035139 [6] Qi B T, Guo J J, Miao Y Q, Zhong M Z, Li B, Luo Z Y, Wang X G, Nie Y Z, Xia Q L and Guo G H 2022 Frontiers in Physics 10 851838 [7] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 031042 [8] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 040501 [9] Yuan L D, Wang Z, Luo J W, Rashba E I and Zunger A 2020 Phys. Rev. B 102 014422 [10] Yuan L D and Zunger A 2023 Adv. Mater. 35 2211966 [11] Egorov S A, Litvin D B and Evarestov R A 2021 J. Phys. Chem. C 125 16147 [12] Turek I 2022 Phys. Rev. B 106 094432 [13] Fernandes R M, de Carvalho V S, Birol T and Pereira R G 2024 Phys. Rev. B 109 024404 [14] Raghottam M S, Giuseppe C and Carmine A 2021 Nanoscale 15 16998 [15] Li J, Shi Z, Ortiz V H, Aldosary M, Chen C, Aji V, Wei P and Shi J 2019 Phys. Rev. Lett. 122 217204 [16] Wu S M, Zhang W, KC A, Borisov P, Pearson J E, Jiang J S, Lederman D, Hoffmann A and Bhattacharya A 2016 Phys. Rev. Lett. 116 097204 [17] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894 [18] Shi Z, Xi Q, Li J, Li Y, Aldosary M, Xu Y, Zhou J, Zhou S M and Shi J 2021 Phys. Rev. Lett. 127 277203 [19] Bai H, Zhang Y C, Zhou Y J, Chen P, Wan C H, Han L, Zhu W X, Liang S X, Su Y C, Han X F, Pan F and Song C 2023 Phys. Rev. Lett. 130 216701 [20] Cheng R, Okamoto S and Xiao D 2016 Phys. Rev. Lett. 117 217202 [21] Zyuzin V A and Kovalev A A 2016 Phys. Rev. Lett. 117 217203 [22] Šmejkal L, Marmodoro A, Ahn K H, González-Hernández R, Turek I, Mankovsky S, Ebert H, D’Souza S W, Šipr O, Sinova J, et al. 2023 Phys. Rev. Lett. 131 256703 [23] Cui Q, Zeng B, Cui P, Yu T and Yang H 2023 Phys. Rev. B 108 L180401 [24] Krempaský J, Šmejkal L, D’Souza S W, Hajlaoui M, Springholz G, Uhlírová K, Alarab F, Constantinou P C, Strocov V, Usanov D, Pudelko W R, Gonzalez-Hernández R, Hellenes A B, Jansa Z, Reichlová H, Šobán Z, Betancourt R D G, Wadley P, Sinova J, Kriegner D, Min ár J, Dil J H and Jungwirth T 2024 Nature 626 517 [25] Zhu Y P, Chen X, Liu X R, Liu Y, Liu P, Zha H, Qu G, Hong C, Li J, Jiang Z, Ma X M, Hao Y J, Zhu M Y, Liu W, Zeng M, Jayaram S, Lenger M, Ding J, Mo S, Tanaka K, Arita M, Liu Z, Ye M, Shen D, Wrachtrup J, Huang Y, He R H, Qiao S, Liu Q and Liu C 2024 Nature 626 523 [26] He R, Wang D, Luo N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401 [27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [29] Ozaki T 2003 Phys. Rev. B 67 155108 [30] Ozaki T and Kino H 2005 Phys. Rev. B 72 045121 [31] Wang H, Qi J and Qian X 2020 Appl. Phys. Lett. 117 083102 [32] Liechtenstein A I, Anisimov V I and Zaanen J Phys. Rev. B 52 R5467 [33] Xiang H J, Kan E J, Wei S H, Whangbo M H and Gong X G 2011 Phys. Rev. B 84 224429 [34] He X, Helbig N, Verstraete M J and Bousquet E 2021 Computer Physics Communications 264 107938 [35] Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823 [36] M-H, Whangbo, Koo H J and Dai D 2003 J. Solid State Chem. 176 417 [37] Steenbock T and Herrmann C 2018 Journal of Computational Chemistry 39 81 [38] Wang N, Chen J, Ding N, Zhang H, Dong S and Wang S S 2022 Phys. Rev. B 106 064435 [39] Casteel W J J, Wilkinson A P, Borrmann H, Serfass R E and Bartlett N 1992 Inorganic Chemistry 31 3124 [40] Lifshitz R 2004 arXiv preprint cond-mat/0406675 [41] Sodequist J and Olsen T 2024 Appl. Phys. Lett. 124 182409 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|