Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097508    DOI: 10.1088/1674-1056/ad6a0e
RAPID COMMUNICATION Prev   Next  

Dzyaloshinskii-Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures

Yaoyuan Wang(王垚元)1,2, Long You(游龙)1,3,†, Kai Chang(常凯)2, and Hongxin Yang(杨洪新)2,‡
1 School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310058, China;
3 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
Abstract  Topological magnetism with strong robustness, nanoscale dimensions and ultralow driving current density ($\sim 10^{6}$ A/m$^{2}$) is promising for applications in information sensing, storage, and processing, and thus sparking widespread research interest. Exploring candidate material systems with nanoscale size and easily tunable properties is a key for realizing practical topological magnetism-based spintronic devices. Here, we propose a class of ultrathin heterostructures, Fe/Bi$_{2}$O$_{2}X$ ($X ={\rm S}$, Se, Te) by deposing metal Fe on quasi-two-dimensional (2D) bismuth oxychalcogenides Bi$_{2}$O$_{2}X$ ($X ={\rm S}$, Se, Te) with excellent ferroelectric/ferroelastic properties. Large Dzyaloshinskii-Moriya interaction (DMI) and topological magnetism can be realized. Our atomistic spin dynamics simulations demonstrate that field-free vortex-antivortex loops and sub-10 nm skyrmions exist in Fe/Bi$_{2}$O$_{2}$S and Fe/Bi$_{2}$O$_{2}$Se interfaces, respectively. These results provide a possible strategy to tailor topological magnetism in ultrathin magnets/2D materials interfaces, which is extremely vital for spintronics applications.
Keywords:  Dzyaloshinskii-Moriya interaction      field-free      topological magnetism  
Received:  09 July 2024      Revised:  30 July 2024      Accepted manuscript online:  01 August 2024
PACS:  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  75.78.Cd (Micromagnetic simulations ?)  
  12.39.Dc (Skyrmions)  
  67.80.dk (Magnetic properties, phases, and NMR)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1405100, 2022YFA1403601, 2020AAA0109005, and 2023YFB4502100), the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Grant No. 2022C01053), the National Natural Science Foundation of China (Grant Nos. 12174405, 12204497, 12327806, and 62074063), and Shenzhen Science and Technology Program (Grant No. JCYJ20220818103410022).
Corresponding Authors:  Long You, Hongxin Yang     E-mail:  lyou@hust.edu.cn;hongxin.yang@zju.edu.cn

Cite this article: 

Yaoyuan Wang(王垚元), Long You(游龙), Kai Chang(常凯), and Hongxin Yang(杨洪新) Dzyaloshinskii-Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures 2024 Chin. Phys. B 33 097508

[1] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[2] Moriya T 1960 Phys. Rev. 120 91
[3] Fert A and Lévy P M 1980 Phys. Rev. Lett. 44 1538
[4] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[5] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[6] Shen L C, Xia J, Zhang X C, Ezawa M, Tretiakov O A, Liu X X, Zhao G P and Zhou Y 2020 Phys. Rev. Lett. 124 037202
[7] Thiaville A, Rohart S, Jué E, Cros V and Fert A 2012 Europhys. Lett. 100 57002
[8] Cui Q R, Liang J H, Zhu Y M, Yao X and Yang H X 2023 Chin. Phys. Lett. 40 037502
[9] Iacocca E and Heinonen O 2017 Phys. Rev. Appl. 8 034015
[10] Li Y M 2023 Phys. Rev. Res. 5 033026
[11] Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S and Tokura Y 2011 Phys. Rev. Lett. 106 156603
[12] Li Y F, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F and Tokura Y 2013 Phys. Rev. Lett. 110 117202
[13] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M and Rosch A 2010 Science 330 1648
[14] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
[15] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[16] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[17] Luo S J, Song M, Li X, Zhang Y, Hong J, Yang X F, Zou X C, Xu N and You L 2018 Nano Lett. 18 1180
[18] Luo S J and You L 2021 APL Mater. 9 050901
[19] Yu D X, Yang H X, Chshiev M and Fert A 2022 Natl. Sci. Rev. 9 nwac021
[20] Song K M, Jeong J S, Pan B, Zhang X C, Xia J, Cha S, Park T E, Kim K, Finizio S, Raabe J, Chang J, Zhou Y, Zhao W S, Kang W, Ju H and Woo S 2020 Nat. Electron. 3 148
[21] Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K and Wang K L 2017 Nano Lett. 17 261
[22] Sheng Y, Wang W Y, Deng Y C, Ji Y, Zheng H Z and Wang K Y 2023 Natl. Sci. Rev. 10 nwad093
[23] Wang L M, Ga Y L, Cui Q R, Li P, Liang J H, Zhou Y, Wang S G and Yang H X 2023 Phys. Rev. B 108 214404
[24] Huang K, Shao D F and Tsymbal E Y 2022 Nano Lett. 22 3349
[25] Sun W, Wang W X, Li H, Zhang G B, Chen D, Wang J L and Cheng Z X 2020 Nat. Commun. 11 5930
[26] Yang H X, Thiaville A, Rohart S, Fert A and Chshiev M 2015 Phys. Rev. Lett. 115 267210
[27] Liang J H, Wang W W, Du H F, Hallal A, Garcia K, Chshiev M, Fert A and Yang H X 2020 Phys. Rev. B 101 184401
[28] Ga Y L, Yu D X, Wang L M, Li P, Liang J H and Yang H X 2023 2D Mater. 10 035020
[29] Li P, Yu D X, Liang J H, Ga Y L and Yang H X 2023 Phys. Rev. B 107 054408
[30] Cui Q R, Liang J H, Shao Z J, Cui P and Yang H X 2020 Phys. Rev. B 102 094425
[31] Zhu Y M, Cui Q R, Liang J H, Ga Y L and Yang H X 2022 2D Mater. 9 045030
[32] Liang J H, Cui Q R and Yang H X 2020 Phys. Rev. B 102 220409
[33] Xu C S, Chen P, Tan H X, Yang Y R, Xiang H J and Bellaiche L 2020 Phys. Rev. Lett. 125 037203
[34] Wang L M, Ga Y L, Li P, Yu D X, Jiang J W, Liang J H, Wang S G and Yang H X 2023 Phys. Rev. B 108 054440
[35] Ga Y L, Yu D X, Li Y, Jiang J W, Wang L M, Li P, Liang J H, Feng H, Shi Y G and Yang H X 2024 Phys. Rev. B 109 L060402
[36] Edström A, Amoroso D, Picozzi S, Barone P and Stengel M 2022 Phys. Rev. Lett. 128 177202
[37] Ga Y L, Cui Q R, Liang J H, Yu D X, Zhu Y M, Wang L M and Yang H X 2022 Phys. Rev. B 106 054426
[38] Jiang J W, Ga Y L, Li P, Cui Q R, Wang L M, Yu D X, Liang J H and Yang H X 2024 Phys. Rev. B 109 014402
[39] Tong Q J, Liu F, Xiao J and Yao W 2018 Nano Lett. 18 7194
[40] Xiao F P, Chen K Q and Tong Q J 2021 Phys. Rev. Res. 3 013027
[41] Yang H X, Boulle O, Cros V, Fert A and Chshiev M 2018 Sci. Rep. 8 12356
[42] Cho J, Kim N H, Lee S, Kim J S, Lavrijsen R, Solignac A, Yin Y X, Han D S, Van Hoof N J J, Swagten H J M, Koopmans B and You C Y 2015 Nat. Commun. 6 7635
[43] Tacchi S, Troncoso R E, Ahlberg M, Gubbiotti G, Madami M, Akerman J and Landeros P 2017 Phys. Rev. Lett. 118 147201
[44] Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V and Udalov O G 2020 Phys. Rev. Lett. 124 157202
[45] Feng C, Meng F, Wang Y D, Jiang J, Mehmood N, Cao Y, Lv X W, Yang F, Wang L, Zhao Y K, Xie S, Hou Z P, Mi W B, Peng Y, Wang K Y, Gao X S, Yu G H and Liu J M 2021 Adv. Funct. Mater. 31 2008715
[46] Zhu Y M, Cui Q R, Liu B, Zhou T J and Yang H X 2023 Phys. Rev. B 108 134438
[47] Dai B Q, Wu D, Razavi S A, Xu S J, He H, Shu Q Y, Jackson M, Mahfouzi F, Huang H S, Pan Q J, Cheng Y, Qu T, Wang T Y, Tai L X, Wong K, Kioussis N and Wang K L 2023 Sci. Adv. 9 eade6836
[48] Wu J X, Yuan H T, Meng M M, Chen C, Sun Y, Chen Z Y, Dang W H, Tan C W, Liu Y J, Yin J B, Zhou Y B, Huang S Y, Xu H Q, Cui Y, Hwang H Y, Liu Z F, Chen Y L, Yan B H and Peng H L 2017 Nat. Nanotechnol. 12 530
[49] Wu M H and Zeng X C 2017 Nano Lett. 17 6309
[50] Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G and Biswas K 2019 Nano Lett. 19 5703
[51] Sun Y, Zhang J, Ye S, Song J and Qu J L 2020 Adv. Funct. Mater. 30 2004480
[52] Li T R, Tu T, Sun Y W, Fu H X, Yu J, Xing L, Wang Z A, Wang H M, Jia R D, Wu J X, Tan C W, Liang Y, Zhang Y C, Zhang C C, Dai Y M, Qiu C G, Li M, Huang R, Jiao L Y, Lai K J, Yan B H, Gao P and Peng H L 2020 Nat. Electron. 3 473
[53] Wang F K, Yang S J, Wu J, Hu X Z, Li Y, Li H Q, Liu X T, Luo J H and Zhai T Y 2021 InfoMat 3 1251
[54] Ding X, Li M L, Chen P, Zhao Y, Zhao M, Leng H Q, Wang Y, Ali S, Raziq F, Wu X Q, Xiao H Y, Zu X T, Wang Q Y, Vinu A, Yi J B and Qiao L 2022 Matter 5 4274
[55] Wu M Q, Lou Z F, Dai C M, Wang T, Wang J, Zhu Z Y, Xu Z K, Sun T L, Li W B, Zheng X R and Lin X 2023 Adv. Mater. 35 2300450
[56] Wang W J, Meng Y, Zhang Y X, Zhang Z, Wang W, Lai Z X, Xie P S, Li D J, Chen D, Quan Q, Yin D, Liu C T, Yang Z B, Yip S and Ho J C 2023 Adv. Mater. 35 2210854
[57] Zhang W, Zhang L, Wong P K J, Yuan J, Vinai G, Torelli P, Van Der Laan G, Feng Y P and Wee A T S 2019 ACS Nano 13 8997
[58] Zhang B H, Hou Y S, Wang Z and Wu R Q 2021 Phys. Rev. B 103 054417
[59] Miwa S, Suzuki M, Tsujikawa M, Matsuda K, Nozaki T, Tanaka K, Tsukahara T, Nawaoka K, Goto M, Kotani Y, Ohkubo T, Bonell F, Tamura E, Hono K, Nakamura T, Shirai M, Yuasa S and Suzuki Y 2017 Nat. Commun. 8 15848
[60] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[61] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[62] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[63] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[64] Blöchl P E 1994 Phys. Rev. B 50 17953
[65] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[66] Li J Q, Cheng C and Duan M Y 2023 Appl. Surf. Sci. 618 156541
[67] Yu J B and Sun Q 2018 Appl. Phys. Lett. 112 053901
[68] Yang H X, Liang J H and Cui Q R 2023 Nat. Rev. Phys. 5 43
[69] Boulle O, Vogel J, Yang H X, Pizzini S, Chaves D de S, Locatelli A, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 449
[70] Dupé B, Hoffmann M, Paillard C and Heinze S 2014 Nat. Commun. 5 4030
[71] Cui Q R, Zhu Y M, Ga Y L, Liang J H, Li P, Yu D X, Cui P and Yang H X 2022 Nano Lett. 22 2334
[72] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[73] Jia H Y, Zimmermann B and Blügel S 2018 Phys. Rev. B 98 144427
[74] Muckel F, Von Malottki S, Holl C, Pestka B, Pratzer M, Bessarab P F, Heinze S and Morgenstern M 2021 Nat. Phys. 17 395
[75] Müller G P, Hoffmann M, Dißelkamp C, Schürhoff D, Mavros S, Sallermann M, Kiselev N S, Jónsson H and Blügel S 2019 Phys. Rev. B 99 224414
[76] Lin S Z, Saxena A and Batista C D 2015 Phys. Rev. B 91 224407
[77] Cui Q R, Zhu Y M, Jiang J W, Liang J H, Yu D X, Cui P and Yang H X 2021 Phys. Rev. Res. 3 043011
[78] Jiang J W, Liu X, Li R and Mi W B 2021 Appl. Phys. Lett. 119 072401
[79] Li P, Cui Q R, Ga Y L, Liang J H and Yang H X 2022 Phys. Rev. B 106 024419
[80] Hervé M, Dupé B, Lopes R, Böttcher M, Martins M D, Balashov T, Gerhard L, Sinova J and Wulfhekel W 2018 Nat. Commun. 9 1015
[81] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[82] Chen S H, Lourembam J, Ho P, Toh A K J, Huang J F, Chen X Y, Tan H K, Yap S L K, Lim R J J, Tan H R, Suraj T S, Sim M I, Toh Y T, Lim I, Lim N C B, Zhou J, Chung H J, Lim S T and Soumyanarayanan A 2024 Nature 627 522
[83] Seki S, Yu X Z, Ishiwata S and Tokura Y 2012 Science 336 198
[84] Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J-M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444
[85] Du W, Dou K, He Z, Dai Y, Huang B and Ma Y 2022 Nano Lett. 22 3440
[1] Wedge-shaped HfO2 buffer layer-induced field-free spin—orbit torque switching of HfO2/Pt/Co structure
Jian-Hui Chen(陈建辉), Meng-Fan Liang(梁梦凡), Yan Song(宋衍), Jun-Jie Yuan(袁俊杰), Meng-Yang Zhang(张梦旸), Yong-Ming Luo(骆泳铭), and Ning-Ning Wang(王宁宁). Chin. Phys. B, 2024, 33(4): 047503.
[2] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[3] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[4] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[5] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[6] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[7] Transferring information through a mixed-five-spin chain channel
Hamid Arian Zad, Hossein Movahhedian. Chin. Phys. B, 2016, 25(8): 080307.
[8] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
[9] Low temperature enhancement of alignment-induced spectral broadening of femtosecond laser pulses
Wang Fei (王翡), Jiang Hong-Bing (蒋红兵), Gong Qi-Huang (龚旗煌). Chin. Phys. B, 2014, 23(1): 014201.
[10] The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field
Zhong Ming (钟鸣), Xu Hui (徐卉), Liu Xiao-Xian (刘小贤), Tong Pei-Qing (童培庆). Chin. Phys. B, 2013, 22(9): 090313.
[11] Magnetization reversal within Dzyaloshinskii–Moriya interaction under on-site Coulomb interaction in BiCrO3
Feng Hong-Jian (冯宏剑 ). Chin. Phys. B, 2012, 21(8): 087103.
[12] Effects of aligning pulse duration on the degree and the slope of nitrogen field-free alignment
Wang Fei(王翡), Jiang Hong-Bing(蒋红兵), and Gong Qi-Huang(龚旗煌) . Chin. Phys. B, 2012, 21(5): 054212.
[13] Role of highest occupied molecular orbitals in molecular field-free alignment by a femtosecond pulse
Chen De-Ying(陈德应), Wang Yu-Quan(王玉铨), Xia Yuan-Qin(夏元钦), Fan Rong-Wei(樊荣伟), and Zhang Sheng(张盛). Chin. Phys. B, 2009, 18(9): 3850-3855.
No Suggested Reading articles found!