|
|
Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field |
Guangqi Fan(樊光琦)1,†, Zhijie Yang(杨志杰)1,†, Fenghao Sun(孙烽豪)2,‡, Jinmei Zheng(郑金梅)3, Yuntian Han(韩云天)1, Mingqian Huang(黄明谦)1, and Qingcao Liu(刘情操)1,§ |
1 College of Science, Harbin Institute of Technology, Weihai 264209, China; 2 School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264209, China; 3 Harbin Institute of Technology, Weihai 264209, China |
|
|
Abstract Using the semiclassical ensemble model, the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization (NSDI) of neon atom driven by the orthogonally polarized two-color field (OTC) laser field is theoretically studied. And the dynamics in two typical collision pathways, recollision-impact-ionization (RII) and recollision-excitation with subsequent ionization (RESI), is systematically explored. Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero, and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron. As the relative amplitude increases, the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum, indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes. Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron-electron collisions and energy exchange efficiency in the NSDI process.
|
Received: 11 March 2024
Revised: 03 May 2024
Accepted manuscript online:
|
PACS:
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
34.50.Fa
|
(Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))
|
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204132 and 12304376), Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No. 2022HWYQ-073), the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2022042), and Natural Science Foundation of Shandong Province (Grant No. ZR2023QA075). |
Corresponding Authors:
Fenghao Sun, Qingcao Liu
E-mail: fhsun@hit.edu.cn;qingcao.liu@hit.edu.cn
|
Cite this article:
Guangqi Fan(樊光琦), Zhijie Yang(杨志杰), Fenghao Sun(孙烽豪), Jinmei Zheng(郑金梅), Yuntian Han(韩云天), Mingqian Huang(黄明谦), and Qingcao Liu(刘情操) Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field 2024 Chin. Phys. B 33 083102
|
[1] Pengel D, Kerbstadt S, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 96 043426 [2] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003 [3] López S D and Arbó D G 2019 Phys. Rev. A 100 023419 [4] Arbó D G, Ishikawa K L, Schiessl K, Persson E and Burgdoerfer J J P R A 2009 Phys. Rev. A 81 021403 [5] Ferray M, Huillier A L, Li X F, Lompre L A, Mainfray G and Manus C 1988 J. Phys. B: Atom. Mol. Opt. Phys. 21 L31 [6] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535 [7] Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chirilă C C, Lein M, Tisch J W G and Marangos J P 2006 Science 312 424 [8] Blaga C I, Xu J, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194 [9] Laycock T, Olmos B, Montgomery T W A, Li W, Fromhold T M and Lesanovsky I 2013 J. Phys. B: Atom. Mol. Opt. Phys. 46 245502 [10] Sun F, Lu C, Ma Y, Pan S, Wang J, Zhang W, Qiang J, Chen F, Ni H, Li H and Wu J 2021 Opt. Express 29 31240 [11] Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642 [12] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227 [13] Song Q, Li H, Wang J, Lu P, Gong X, Ji Q, Lin K, Zhang W, Ma J, Li H, Zeng H, He F and Wu J 2018 J. Phys. B: Atom. Mol. Opt. Phys. 51 074002 [14] Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642 [15] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [16] Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dörner R 2007 Phys. Rev. Lett. 99 263002 [17] Henrichs K, Eckart S, Hartung A, Trabert D, Fehre K, Rist J, Sann H, Pitzer M, Richter M, Kang H, Schöffler M S, Kunitski M, Jahnke T and Dörner R 2018 Phys. Rev. A 98 043405 [18] Haan S L, Smith Z S, Shomsky K N and Plantinga P W 2008 J. Phys. B: Atom. Mol. Opt. Phys. 41 211002 [19] Kang H, Chen S, Wang Y, Chu W, Yao J, Chen J, Liu X, Cheng Y and Xu Z 2019 Phys. Rev. A 100 033403 [20] Liao Q, Lu P, Zhang Q, Yang Z and Wang X J O E 2008 Opt. Express 21 17070 [21] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [22] Zhai C, Zhu X, Long J, Shao R, Zhang Y, He L, Tang Q, Li Y, Lan P, Yu B and Lu P 2021 Phys. Rev. A 103 033114 [23] Zhang B and Lein M 2019 Phys. Rev. A 100 043401 [24] Kitzler M, Xie X, Scrinzi A and Baltuska A 2007 Phys. Rev. A 76 011801 [25] Kitzler M, Xie X, Roither S, Scrinzi A and Baltuska A 2008 New J. Phys. 10 025029 [26] Zhang L, Xie X, Roither S, Zhou Y, Lu P, Kartashov D, Schöffler M, Shafir D, Corkum P B, Baltuška A, Staudte A and Kitzler M 2014 Phys. Rev. Lett. 112 193002 [27] Zhou Y M, Huang C, Liao Q, Hong W Y and Lu P X 2011 Opt. Lett. 15 2758 [28] Li Y, Qin L, Liu A, Zhang K, Tang Q, Zhai C, Xu J, Chen S, Yu B and Chen J 2022 Chin. Phys. Lett. 39 093201 [29] Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I and DiMauro L F 2006 Phys. Rev. Lett. 96 133001 [30] Hu S X 2013 Phys. Rev. Lett. 111 123003 [31] Zhu J and Scrinzi A 2020 Phys. Rev. A 101 063407 [32] Jia X Y, Li W D, Fan J, Liu J and Chen J 2008 Phys. Rev. A 77 063407 [33] Zhou Y, Liao Q and Lu P 2010 Phys. Rev. A 82 053402 [34] Ye D F and Liu J 2010 Phys. Rev. A 81 043402 [35] Sun F, Chen X, Zhang W, Qiang J, Li H, Lu P, Gong X, Ji Q, Lin K, Li H, Tong J, Chen F, Ruiz C, Wu J and He F 2020 Phys. Rev. A 101 021402 [36] Pont M, Proulx D and Shakeshaft R 1991 Phys. Rev. A 44 4486 [37] Ammosov M V, Delone N B and Krainov V P 1986 J. Exp. Theor. Phys. 64 1191 [38] Abrines R and Percival I C 1966 Proceedings of the Physical Society 88 861 [39] Haan S L, Smith Z S, Shomsky K N and Plantinga P W 2008 J. Phys. B: Atom. Mol. Opt. Phys. 41 211002 [40] Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dörner R 2007 Phys. Rev. Lett. 99 263002 [41] Zhou Y, Liao Q and Lu P 2010 Phys. Rev. A 82 053402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|