Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 083102    DOI: 10.1088/1674-1056/ad4bc0
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field

Guangqi Fan(樊光琦)1,†, Zhijie Yang(杨志杰)1,†, Fenghao Sun(孙烽豪)2,‡, Jinmei Zheng(郑金梅)3, Yuntian Han(韩云天)1, Mingqian Huang(黄明谦)1, and Qingcao Liu(刘情操)1,§
1 College of Science, Harbin Institute of Technology, Weihai 264209, China;
2 School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264209, China;
3 Harbin Institute of Technology, Weihai 264209, China
Abstract  Using the semiclassical ensemble model, the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization (NSDI) of neon atom driven by the orthogonally polarized two-color field (OTC) laser field is theoretically studied. And the dynamics in two typical collision pathways, recollision-impact-ionization (RII) and recollision-excitation with subsequent ionization (RESI), is systematically explored. Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero, and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron. As the relative amplitude increases, the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum, indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes. Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron-electron collisions and energy exchange efficiency in the NSDI process.
Keywords:  nonsequential double ionization      correlated electron-electron momentum distribution      energy sharing of electrons      orthogonally polarized two-color field laser field      semiclassical ensemble models  
Received:  11 March 2024      Revised:  03 May 2024      Accepted manuscript online: 
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  34.80.Dp (Atomic excitation and ionization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204132 and 12304376), Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No. 2022HWYQ-073), the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2022042), and Natural Science Foundation of Shandong Province (Grant No. ZR2023QA075).
Corresponding Authors:  Fenghao Sun, Qingcao Liu     E-mail:  fhsun@hit.edu.cn;qingcao.liu@hit.edu.cn

Cite this article: 

Guangqi Fan(樊光琦), Zhijie Yang(杨志杰), Fenghao Sun(孙烽豪), Jinmei Zheng(郑金梅), Yuntian Han(韩云天), Mingqian Huang(黄明谦), and Qingcao Liu(刘情操) Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field 2024 Chin. Phys. B 33 083102

[1] Pengel D, Kerbstadt S, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. A 96 043426
[2] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003
[3] López S D and Arbó D G 2019 Phys. Rev. A 100 023419
[4] Arbó D G, Ishikawa K L, Schiessl K, Persson E and Burgdoerfer J J P R A 2009 Phys. Rev. A 81 021403
[5] Ferray M, Huillier A L, Li X F, Lompre L A, Mainfray G and Manus C 1988 J. Phys. B: Atom. Mol. Opt. Phys. 21 L31
[6] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
[7] Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chirilă C C, Lein M, Tisch J W G and Marangos J P 2006 Science 312 424
[8] Blaga C I, Xu J, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194
[9] Laycock T, Olmos B, Montgomery T W A, Li W, Fromhold T M and Lesanovsky I 2013 J. Phys. B: Atom. Mol. Opt. Phys. 46 245502
[10] Sun F, Lu C, Ma Y, Pan S, Wang J, Zhang W, Qiang J, Chen F, Ni H, Li H and Wu J 2021 Opt. Express 29 31240
[11] Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642
[12] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227
[13] Song Q, Li H, Wang J, Lu P, Gong X, Ji Q, Lin K, Zhang W, Ma J, Li H, Zeng H, He F and Wu J 2018 J. Phys. B: Atom. Mol. Opt. Phys. 51 074002
[14] Fittinghoff D N, Bolton P R, Chang B and Kulander K C 1992 Phys. Rev. Lett. 69 2642
[15] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[16] Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dörner R 2007 Phys. Rev. Lett. 99 263002
[17] Henrichs K, Eckart S, Hartung A, Trabert D, Fehre K, Rist J, Sann H, Pitzer M, Richter M, Kang H, Schöffler M S, Kunitski M, Jahnke T and Dörner R 2018 Phys. Rev. A 98 043405
[18] Haan S L, Smith Z S, Shomsky K N and Plantinga P W 2008 J. Phys. B: Atom. Mol. Opt. Phys. 41 211002
[19] Kang H, Chen S, Wang Y, Chu W, Yao J, Chen J, Liu X, Cheng Y and Xu Z 2019 Phys. Rev. A 100 033403
[20] Liao Q, Lu P, Zhang Q, Yang Z and Wang X J O E 2008 Opt. Express 21 17070
[21] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[22] Zhai C, Zhu X, Long J, Shao R, Zhang Y, He L, Tang Q, Li Y, Lan P, Yu B and Lu P 2021 Phys. Rev. A 103 033114
[23] Zhang B and Lein M 2019 Phys. Rev. A 100 043401
[24] Kitzler M, Xie X, Scrinzi A and Baltuska A 2007 Phys. Rev. A 76 011801
[25] Kitzler M, Xie X, Roither S, Scrinzi A and Baltuska A 2008 New J. Phys. 10 025029
[26] Zhang L, Xie X, Roither S, Zhou Y, Lu P, Kartashov D, Schöffler M, Shafir D, Corkum P B, Baltuška A, Staudte A and Kitzler M 2014 Phys. Rev. Lett. 112 193002
[27] Zhou Y M, Huang C, Liao Q, Hong W Y and Lu P X 2011 Opt. Lett. 15 2758
[28] Li Y, Qin L, Liu A, Zhang K, Tang Q, Zhai C, Xu J, Chen S, Yu B and Chen J 2022 Chin. Phys. Lett. 39 093201
[29] Parker J S, Doherty B J S, Taylor K T, Schultz K D, Blaga C I and DiMauro L F 2006 Phys. Rev. Lett. 96 133001
[30] Hu S X 2013 Phys. Rev. Lett. 111 123003
[31] Zhu J and Scrinzi A 2020 Phys. Rev. A 101 063407
[32] Jia X Y, Li W D, Fan J, Liu J and Chen J 2008 Phys. Rev. A 77 063407
[33] Zhou Y, Liao Q and Lu P 2010 Phys. Rev. A 82 053402
[34] Ye D F and Liu J 2010 Phys. Rev. A 81 043402
[35] Sun F, Chen X, Zhang W, Qiang J, Li H, Lu P, Gong X, Ji Q, Lin K, Li H, Tong J, Chen F, Ruiz C, Wu J and He F 2020 Phys. Rev. A 101 021402
[36] Pont M, Proulx D and Shakeshaft R 1991 Phys. Rev. A 44 4486
[37] Ammosov M V, Delone N B and Krainov V P 1986 J. Exp. Theor. Phys. 64 1191
[38] Abrines R and Percival I C 1966 Proceedings of the Physical Society 88 861
[39] Haan S L, Smith Z S, Shomsky K N and Plantinga P W 2008 J. Phys. B: Atom. Mol. Opt. Phys. 41 211002
[40] Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber T, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dörner R 2007 Phys. Rev. Lett. 99 263002
[41] Zhou Y, Liao Q and Lu P 2010 Phys. Rev. A 82 053402
[1] Evidence of potential change in nonsequential double ionization
Changchun Jia(贾昌春), Pu Zhang(张朴), Hua Wen(文华), and Zhangjin Chen(陈长进). Chin. Phys. B, 2021, 30(2): 023401.
[2] Multiple recollisions in nonsequential double ionization below the recollision-ionization threshold
Xiao-Meng Ma(马晓萌), Ai-Hong Tong(童爱红), Zhuo Wang(王茁), and Chun-Yang Zhai(翟春洋). Chin. Phys. B, 2021, 30(12): 123402.
[3] Relative phase-dependent two-electron emission dynamics with two-color circularly polarized laser fields
Tong-Tong Xu(徐彤彤), Lian-Lian Zhang(张莲莲), Zhao Jin(金钊), Wei-Jiang Gong(公卫江). Chin. Phys. B, 2020, 29(9): 093202.
[4] Controlling electron collision by counterrotating circular two-color laser fields
Baoqin Li(李宝琴), Xianghe Ren(任向河), Jingtao Zhang(张敬涛). Chin. Phys. B, 2020, 29(4): 043202.
[5] Relative phase effect of nonsequential double ionization in Ar by two-color elliptically polarized laser field
Jia-He Chen(陈佳贺), Tong-Tong Xu(徐彤彤), Tao Han(韩涛), Yue Sun(孙悦), Qing-Yun Xu(徐清芸), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(1): 013203.
[6] Quantitative rescattering theory for nonsequential double ionization
Zhangjin Chen(陈长进), Fang Liu(刘芳), Hua Wen(文华). Chin. Phys. B, 2019, 28(12): 123401.
[7] Effect of elliptical polarizations on nonsequential double ionization in two-color elliptically polarized laser fields
Tong-Tong Xu(徐彤彤), Jia-He Chen(陈佳贺), Xue-Fei Pan(潘雪飞), Hong-Dan Zhang(张宏丹), Shuai Ben(贲帅), Xue-Shen Liu(刘学深). Chin. Phys. B, 2018, 27(9): 093201.
[8] Nonsequential double ionization of diatomic molecules by elliptically polarized laser pulses
Tong Ai-Hong (童爱红), Liu Dan (刘丹), Feng Guo-Qiang (冯国强). Chin. Phys. B, 2014, 23(10): 103302.
[9] Electron correlations in nonsequential double ionization of argon atoms by elliptically polarized laser pulses
Yu Ben-Hai (余本海), Li Ying-Bin (李盈傧), Tang Qing-Bin (汤清彬). Chin. Phys. B, 2013, 22(1): 013206.
[10] Nonsequential double ionization of nonaligned diatomic molecules N2 and O2
Jia Xin-Yan (贾欣燕), Fan Dai-He (樊代和), Li Wei-Dong (李卫东), Chen Jing (陈京). Chin. Phys. B, 2013, 22(1): 013303.
[11] Nonsequential double ionization of the aligned hydrogen molecule in strong field
Li Yan(李燕), Yang Shi-Ping(杨世平), Jia Xin-Yan(贾欣燕), and Chen Jing(陈京). Chin. Phys. B, 2010, 19(4): 043303.
[12] Double ionization of helium interacting with elliptically polarized laser pulse by classical ensemble simulations
Yu Wei-Wei(于伟威),Guo Jing(郭静), and Liu Xue-Shen(刘学深). Chin. Phys. B, 2010, 19(2): 023201.
No Suggested Reading articles found!