Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064701    DOI: 10.1088/1674-1056/ad3343
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Morphological analysis for thermodynamics of cavitation collapse near fractal solid wall

Minglei Shan(单鸣雷)1,†, Yu Yang(杨雨)2,‡, Xuefen Kan(阚雪芬)3, Cheng Yin(殷澄)1, and Qingbang Han(韩庆邦)1
1 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China;
2 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210000, China;
3 Department of Transportation Engineering, Jiangsu Shipping College, Nantong 226000, China
Abstract  A fractal geometric boundary with natural wall features is introduced into a hybrid lattice-Boltzmann-method (LBM) multiphase model. The physical model of cavitation bubble collapse near the irregular geometric wall is established to study the thermodynamic characteristics of the bubble collapse. Due to the lack of periodicity, symmetry, spatial uniformity and obvious correlation in the LBM simulation of the bubble collapse near the fractal wall, the morphological analysis based on Minkowski functional is introduced into the thermodynamic investigation of cavitation bubble so as to analyze and obtain the effective information. The results show that the Minkowski functional method can employed to study the temperature information in complex physical fields hierarchically and quantitatively. The high/low temperature region of the cavitation flow is explored, and thermal effect between irregular and fractal geometric wall and cavitation bubble can be revealed. It illustrates that LBM and morphological analysis complement each other, and morphological analysis can also be used as an optional and potential tool in research field of complex multiphase flows.
Keywords:  lattice Boltzmann method      cavitation bubble      morphological analysis  
Received:  21 December 2023      Revised:  13 February 2024      Accepted manuscript online:  13 March 2024
PACS:  47.11.Qr (Lattice gas)  
  47.55.Ca (Gas/liquid flows)  
  47.55.dd (Bubble dynamics)  
  47.55.dp (Cavitation and boiling)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874140 and 12174085), Basic Science (Natural Science) Research Project for the Universities of Jiangsu Province (Grant No. 23KJD140002), and the Natural Science Foundation of Nantong (Grant No. JC2023081).
Corresponding Authors:  Minglei Shan, Yu Yang     E-mail:  shanming2003@126.com;yang1996@njfu.edu.cn

Cite this article: 

Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), and Qingbang Han(韩庆邦) Morphological analysis for thermodynamics of cavitation collapse near fractal solid wall 2024 Chin. Phys. B 33 064701

[1] Brennen C E 2005 Fundamentals of Multiphase Flow (New York: Cambridge University Press) p. 19
[2] Koch M, and Lechner C, Reuter F K and Lauterborn W 2016 Comput. Fluids 126 71
[3] Guo X S, Cai C, Xu G, Yang Y, Tu J, Huang P T and Zhang D 2017 Ultrason. Sonochem. 39 863
[4] Kyriazis N, Koukouvinis P and Gavaises M 2017 Int. J. Multiphase Flow 93 158
[5] Yang Y, Shan M L, Kan X F, Duan K J, Han Q B and Juan Y 2023 Heliyon 9 e20532
[6] Shan M L, Yang Y, Zhao X M, Cheng Y and Han Q B 2021 Chin. Phys. B 30 044701
[7] Yang Y, Shan M L, Kan X F, Shangguan Y Q and Han Q B 2020 Ultrason. Sonochem. 62 104873
[8] Yang Y, Shan M L, Han Q B and Kan X F 2020 Chin. Phys. B 30 024701
[9] Liu Y and Peng Y 2021 J. Mar. Sci. Eng. 9 219
[10] Peng H N, Zhang J, He X L and Wang Y 2020 Compu. Fluids 217 104817
[11] Leemput P V, Vandekerckhove C, Vanroose W and Roose D 2007 Siam Journal on Multiscale Modeling and Simulation 6 838
[12] Lallemand P and Luo L S 2008 Int. J. Mod. Phys. B 17 41
[13] Shuai G and Ping C 2012 Int. J. Heat Mass Tran. 55 4923
[14] Li Q, Kang Q J, Francois M M, He Y L and Luo K H 2015 Int. J. Heat Mass Tran. 85 787
[15] Liu Y and Peng Y 2020 Energies 13 4398
[16] Shan M L, Zhu C P, Zhou X, Cheng Y and Han Q B 2016 J. Hydrodyn. 28 442
[17] Dular M and Coutier-Delgosha O 2013 Journal of Fluid Mechanics 735 44
[18] Chahine G L, Kapahi A, Choi J K and Hsiao C T 2016 Ultrason. Sonochem. 29 528
[19] Serra J 1982 Biometrics 39 536
[20] Mecke K 1996 Phys. Rev. E 53 4794
[21] Gan Y B, Xu A G, Zhang G C, Li Y J and Li H 2011 Phys. Rev. E 84 046715
[22] Xu A G, Zhang G, Ying Y, Zhang P and Zhu J 2010 Phys. Scr. 81 055805
[23] D’Humieres D, Ginzburg I, Krafczyk M, Lallemand P and Luo L S 2002 Phil. Trans. R. Soc. A 360 437
[24] Chai Z H and Shi B C 2020 Phys. Rev. E 102 023306
[25] Chai Z H, Shi B C and Guo Z L 2016 J. Sci. Comput. 69 355
[26] Guo Z, Shi B and Zheng C 2002 Int. J. Numer. Methods Fluids 39 325
[27] Chai Z H and Zhao T S 2012 Phys. Rev. E 86 016705
[28] Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301
[29] Shan X W and Chen H D 1993 Phys. Rev. E 47 1815
[30] Shan X W and Chen H D 1994 Phys. Rev. E 49 2941
[31] Yuan P and Schaefer L 2006 Phys. Fluids 18 042101
[32] Shan X W 2006 Phys. Rev. E 73 047701
[33] Li Q, Yu Y, Zhou P and Yan H J 2018 Appl. Therm. Eng. 132 490
[34] Zhang Y D, Xu A G, Zhang G C, Gan Y B, Chen Z H and Succi S 2019 Soft Matters 15 2245
[35] Chen F, Xu A G, Zhang Y D and Zeng Q K 2020 Phys. Fluids 32 104111
[36] Arns C H, Mecke J, Mecke K and Stoyan D 2005 Eur. Phys. J. B 32 397
[37] Xu A G, Song J, Chen F, Xie K and Ying Y 2021 Chin. J. Comput. Phys. 38 631 (in Chinese)
[38] Ogilvie S R, Isakov E and Glover P 2006 Earth Planet. Sci. Lett. 241 454
[39] Li B, Tong J, Xiao X, Zhang J, Xu Y, Wang W, Yan F, Yang C and Chen X 2010 Mapping Science 35 41 (in Chinese)
[1] On the spreading behavior of a droplet on a circular cylinder using the lattice Boltzmann method
Fan Yang(杨帆), Hu Jin(金虎), and Mengyao Dai(戴梦瑶). Chin. Phys. B, 2024, 33(6): 064702.
[2] Passive particles driven by self-propelled particle: The wake effect
Kai-Xuan Zheng(郑凯选), Jing-Wen Wang(汪静文), Shi-Feng Wang(王世锋), and De-Ming Nie(聂德明). Chin. Phys. B, 2024, 33(4): 044501.
[3] Discussion on interface deformation and liquid breakup mechanism in vapor-liquid two-phase flow
Xiang An(安祥), Bo Dong(董波), Ya-Jin Zhang(张雅瑾), and Xun Zhou(周训). Chin. Phys. B, 2023, 32(9): 094702.
[4] Application of shifted lattice model to 3D compressible lattice Boltzmann method
Hao-Yu Huang(黄好雨), Ke Jin(金科), Kai Li(李凯), and Xiao-Jing Zheng(郑晓静). Chin. Phys. B, 2023, 32(9): 094701.
[5] Improved contact angle measurement in multiphase lattice Boltzmann
Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海). Chin. Phys. B, 2023, 32(5): 054701.
[6] Simulation of gas-liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
Kai Feng(冯凯), Gang Yang(杨刚), and Huichen Zhang(张会臣). Chin. Phys. B, 2023, 32(11): 114703.
[7] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[8] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[9] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[10] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[11] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[12] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[13] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[14] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[15] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
No Suggested Reading articles found!