Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064702    DOI: 10.1088/1674-1056/ad3b7f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

On the spreading behavior of a droplet on a circular cylinder using the lattice Boltzmann method

Fan Yang(杨帆)1,2,†, Hu Jin(金虎)1, and Mengyao Dai(戴梦瑶)1
1 School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
Abstract  The study of a droplet spreading on a circular cylinder under gravity was carried out using the pseudo-potential lattice Boltzmann high-density ratios multiphase model with a non-ideal Peng-Robinson equation of state. The calculation results indicate that the motion of the droplet on the cylinder can be divided into three stages: spreading, sliding, and aggregating. The contact length and contact time of a droplet on a cylindrical surface can be affected by factors such as the wettability gradient of the cylindrical wall, the Bond number, and droplet size. Furthermore, phase diagrams showing the relationship between Bond number, cylinder wall wettability gradient, and contact time as well as maximum contact length for three different droplet sizes are given. A theoretical foundation for additional research into the heat and mass transfer process between the droplet and the cylinder can be established by comprehending the variable rules of maximum contact length and contact time.
Keywords:  lattice Boltzmann methods      droplet      circular cylinder      wettability gradient  
Received:  12 December 2023      Revised:  08 March 2024      Accepted manuscript online:  07 April 2024
PACS:  47.61.Jd (Multiphase flows)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
  47.11.Qr (Lattice gas)  
  02.60.Cb (Numerical simulation; solution of equations)  
Corresponding Authors:  Fan Yang     E-mail:  usstyf@126.com

Cite this article: 

Fan Yang(杨帆), Hu Jin(金虎), and Mengyao Dai(戴梦瑶) On the spreading behavior of a droplet on a circular cylinder using the lattice Boltzmann method 2024 Chin. Phys. B 33 064702

[1] Sayyari J M, Naghedifar A S and Esfahani J A 2020 J. Braz. Soc. Mech. Sci. Eng. 42 142
[2] Xu B, Min S Q, Pan D, Ni J C and Zhang Y J 2023 Colloids Surf. A 675 131974
[3] Li S P, Lai S J, Zhang R H and Guo Z G 2023 Chem. Eng. J. 470 143659
[4] Liu K Q, Fang K J, Chen W C, Zhang C M, Sun L Y and Zhu J L 2023 Int. J. Biol. Macromol. 224 1252
[5] Wang M Y, Shi F R, Zhao H Z, Sun F Y, Fang K J, Miao D G, Zhao Z H, Xie R Y and Chen W C 2022 J. Cleaner Prod. 362 132333
[6] Abolghasemibizaki M, McMasters R L and Mohammadi R 2018 J. Colloid Interface Sci. 521 17
[7] Huang C, Qian L J, Lv L, Huo B J, Zhu W and Wang Y S 2023 Exp. Therm. Fluid Sci. 144 110867
[8] Jin Z Y, Zhang H H and Yang Z G 2017 Int. J. Heat Mass Transfer 113 318
[9] Liu X, Min J C, Zhang X, Hu Z F and Wu X M 2021 Int. J. Multiphase Flow 141 103675
[10] Lu Y, Wang X M, Liu W P, Li E Z, Cheng F Q and Miller J D 2019 Fuel 253 273
[11] Wang Y L 2020 Appl. Surf. Sci. 516 146155
[12] Wang Y L, Wang Y X and Wang S R 2020 J. Colloid Sci. 578 207
[13] Li X X, Li H W, Zheng D and Wang Y X 2021 Colloids Surf. A 618 126493
[14] Luo J, Wu S Y, Xiao L and Chen Z L 2021 Int. J. Multiphase Flow 143 103774
[15] Luo J, Wu S Y, Xiao L and Chen Z L 2021 Int. J. Mech. Sci. 197 106333
[16] Shi K W, Huang J X and Duan X L 2024 Int. J. Therm. Sci. 196 108726
[17] Gai S L, Peng Z B, Moghtaderi B, Yu J L and Doroodchi E 2022 Comput. Fluids 246 105616
[18] Chai Z H, Guo X Y, Wang L and Shi B C 2019 Phys. Rev. E 99 023312
[19] Yang F, Yang H C, Yan Y H, Guo X Y, Dai R and Liu C Q 2017 J. Mech. Sci. Technol. 31 3053
[20] Wang N N, Liu H H and Zhang C H 2017 J. Rheol. 61 741
[21] Huang H B, Yang X, Krafczyk M and Lu X Y 2012 J. Fluid Mech. 692 369
[22] Huang H B, Yang X and Lu X Y 2014 Phys. Fluids 26 053302
[23] Shan X and Chen H 1993 Phys. Rev. E 47 1815
[24] Chen W Y, Yang F, Yan Y H, Guo X Y, Dai R and Cai X S 2018 J. Mech. Sci. Technol. 32 2637
[25] Gunstensen A K, Rothman D H, Zaleski S and Zanetti G 1991 Phys. Rev. A 43 4320
[26] Yang F, Shao X S, Wang Y, Lu Y S and Cai X S 2021 Eur. J. Mech. B. Fluids 86 90
[27] He X, Chen S and Doolen G D 1998 J. Comput. Phys. 146 282
[28] Sun M Y, Ang L, Zhang X J, Fei Y X, Zhu L and Huang Z 2023 J. Power Sources 587 233700
[29] Swift M R, Orlandini E, Osborn W R and Yeomans J M 1996 Phys. Rev. E 54 5041
[30] Gong J M, Oshima N and Tabe Y 2019 Comput. Math. Appl. 78 1166
[31] Zhumatay N, Kabdenova B, Monaco E and Rojas-solorzano L R 2021 Eur. J. Mech. B. Fluids 86 198
[32] Tilehboni S E M, Fattahi E, Afrouzi H H and Farhadi M 2015 J. Mol. Liq. 212 544
[33] An S Y, Zhan Y T, Mahani H and Niasar V 2022 Fuel 329 125294
[34] An X, Dong B, Li W Z, Zhou X and Sun T 2021 Comput. Math. Appl. 92 76
[35] Lin D J, Wang L, Wang X D and Yan W M 2019 Int. J. Heat Mass Transfer 132 1105
[36] Zhang L Z, Wang Y B, Gao S R, Lin D J, Yang Y R, Wang X D and Lee D J 2021 J. Taiwan Inst. Chem. Eng. 126 359
[37] Zhang L Z, Xu S Y, Wang Y F, Yang Y R, Zheng S F, Gao S R, Wang X D and Lee D J 2022 Langmuir 38 11860
[38] Zhang L Z, Chen X, Yang Y R and Wang X D 2023 Langmuir 39 6375
[39] Chen L, Gao M, Liang J, Wang D M, Hao L and Zhang L X 2022 Eng. Appl. Comp. Fluid 16 1796
[40] Gong S and Cheng P 2015 Int. J. Heat Mass Transfer 80 206
[41] Arsalan H, Abdolrahman D, Sajad R and Keivan M 2023 Theor. Comput. Fluid Dyn. 37 83
[42] Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301
[43] Yao J, Wang J F, Dong Q M, Wang D B, Zhang W, Xu H J and Zuo L 2022 Appl. Therm. Eng. 211 118517
[44] Zhang K X, Zhao J Y, Chen S, Wang Y X and Liu Y 2019 Appl. Surf. Sci. 486 337
[1] Transient study of droplet oscillation characteristics driven by an electric field
Yan-Fei Gao(高燕飞), Wei-Feng He(何纬峰), Adam Abdalazeem, Qi-Le Shi(施其乐), Ji-Rong Zhang(张继荣),Peng-Fei Su(苏鹏飞), Si-Yong Yu(俞思涌), Zhao-Hui Yao(姚照辉), and Dong Han(韩东). Chin. Phys. B, 2023, 32(12): 128201.
[2] Photo-responsive droplet manipulation slippery lubricant-infused porous surface with ultra-high durability
Ze-Zhi Liu(刘泽志), Chen Zhang(张琛), Tong Wen(文通), Hui-Zhu Li(李荟竹), Wen-Ping Gao(高文萍), Xin-Kong Wang(王新孔), Wei Zhao(赵伟), Kai-Ge Wang(王凯歌), and Jin-Tao Bai(白晋涛). Chin. Phys. B, 2023, 32(11): 116801.
[3] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[4] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[5] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[6] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[7] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[8] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[9] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[10] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[11] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[12] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[13] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[14] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[15] Evaporation of saline colloidal droplet and deposition pattern
Hong-Hui Sun(孙弘辉), Wei-Bin Li(李伟斌), Wen-Jie Ji(纪文杰), Guo-Liang Dai(戴国亮), Yong Huan(郇勇), Yu-Ren Wang(王育人), Ding Lan(蓝鼎). Chin. Phys. B, 2020, 29(1): 014701.
No Suggested Reading articles found!