Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064501    DOI: 10.1088/1674-1056/ad2608
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of speed humps on instantaneous traffic emissions in a microscopic model with limited deceleration capacity

Yu-Chen Hu(胡宇晨)1, Qi-Lang Li(李启朗)1,†, Jun Liu(刘军)1, Jun-Xia Wang(王君霞)2, and Bing-Hong Wang(汪秉宏)3
1 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China;
2 School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China;
3 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO$_2$, NO$_X$ and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined NaSch model, the present model has lower instantaneous emissions such as CO$_2$, NO$_X$ and PM and higher volatile organic components (VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO$_2$, NO$_X$ and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.
Keywords:  traffic emissions      speed humps      slow-to-start rules      deceleration capacity  
Received:  16 November 2023      Revised:  17 January 2024      Accepted manuscript online:  05 February 2024
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
Fund: This work is funded by the National Natural Science Foundation of China (Grant No. 11875031) and the key research projects of Natural Science of Anhui Provincial Colleges and Universities (Grant No. 2022AH050252).
Corresponding Authors:  Qi-Lang Li     E-mail:  qlli@ahjzu.edu.cn

Cite this article: 

Yu-Chen Hu(胡宇晨), Qi-Lang Li(李启朗), Jun Liu(刘军), Jun-Xia Wang(王君霞), and Bing-Hong Wang(汪秉宏) Effect of speed humps on instantaneous traffic emissions in a microscopic model with limited deceleration capacity 2024 Chin. Phys. B 33 064501

[1] Yang N, Yang L, Xu F, Han X, Liu B, Zheng N Y, Li Y, Bai Y, Li L W and Wang J G 2022 Sustainability 14 16367
[2] Zhao H Y, Wu R L, Liu Y, Cheng J, Geng G N, Zheng Y X, Tian H Z, He K B and Zhang Q 2023 Environ. Sci. Ecotechnology 16 100264
[3] Achakulwisut P, Brauer M, Hystad P and Anenberg S C 2019 Lancet Planet Health 3 e166
[4] Zhang K and Batterman S 2013 Sci. Total Environ. 450 307
[5] Dimaratos A, Giechaskiel B, Clairotte M and Fontaras G 2022 Energies 15 5070
[6] Pan S, Du S S, Wang X, Zhang X X, Xia L, Liu J P, Pei F and Wei Y X 2019 Sustain Cities Soc. 45 366
[7] Srimuruganandam B and Nagendra S M S 2010 Atmos. Pollut. Res. 1 184
[8] Wu J B, Guan D X, Yuan F H, Yang H, Wang A Z and Jin C J 2012 Atmos. Environ. 61 9
[9] Chen F Y, Gu X, Yu H M, Zhang X L and Wang Y J 2023 Environ. Sci. Pollut. Res. 30 59540
[10] Hassouna F M A and Assad M 2020 Int. J. Environ. Res. Public Health 17 8940
[11] Huang Q, Hu Y R and Luo L Q 2022 Environ. Sci. Pollut. Res. 29 53293
[12] Derwent R G, Jenkin M E, Utembe S R, Shallcross D E, Murrells T P and Passant N R 2010 Sci. Total Environ. 408 3374
[13] Han S Q, Bian H, Feng Y C, Liu A X, Li X J, Zeng F and Zhang X L 2011 Aerosol Air. Qual. Res. 11 128
[14] Abdel-Wahed T A and Hashim I H 2017 J. Traffic Transp. Eng. (Engl. Ed.) 4 103
[15] Obeng D A, Tuffour Y A, Poku-Boansi M and Amoako C 2022 Sci. Afr. 16 e01215
[16] Hassouna F M A, Assad M, Koa I, Rabaya W, Aqhash A, Rahhal A and Saqf-Alhait H 2021 Atmosphere 12 937
[17] Zhou G F, Ma H S, Wang Y F and Cao S Q 2021 IFAC-Papers On Line 54 410
[18] Obregón-Biosca S A 2020 Results Eng. 5 100089
[19] Januševičius T and Grubliauskas R 2019 Air Qual. Atmos. Health 12 635
[20] Baltrenas H P, Januševičius T and Chlebnikovas A 2017 Measurement 100 62
[21] Nagel K and Schreckenberg M 1992 J. Phys. I France 2 2221
[22] Nagel K and Paczuski M 1995 Phys. Rev. E 51 2909
[23] Takayasu M and Takayasu H 1993 Fractals 1 860
[24] Schadschneider A and Schreckenberg M 1997 Ann. Phys. 509 541
[25] Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066128
[26] Knospe W, Santen L, Schadschneider A and Schreckenberg M 2000 J. Phys. A: Math. Gen. 33 L477
[27] Jiang R and Wu Q S 2003 J. Phys. A: Math. Gen. 36 381
[28] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 238702
[29] Pottmeier A, Thiemann C, Schadschneider A and Schreckenberg M 2007 Mechanical restriction versus human overreaction: Accident avoidance and two-lane traffic simulations Traffic and Granular Flow’05 (Springer) pp. 503-508
[30] Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A: Math. Gen. 35 9971
[31] Li Q L, Wong S C, Min J, Tian S and Wang B H 2016 Phys. A 456 128
[32] Zhao H T, Liu X R, Chen X X and Lu J C 2018 Phys. A 494 40
[33] Singh M K and Rao K R 2020 IET Intell. Transp. Syst. 14 1507
[34] Echab H, Lakouari N, Ez-Zahraouy H and Benyoussef A 2016 Phys. Lett. A 380 992
[35] Madani A and Moussa N 2012 JATIT £LLS 35 250
[36] Li X and Sun J Q 2015 Phys. A 438 251
[37] Wang X, Xue Y, Cen B L, Zhang P and He H D 2020 Phys. A 537 122686
[38] Pan W, Chen X L and Duan X J 2022 Eur. Phys. J. B 95 105
[39] Panis L I, Broekx S and Liu R H 2006 Sci. Total Environ. 371 270
[40] Lakouari N, Oubram O, Bassam A, Hernandez S E P, Marzoug R and Ez-Zahraouy H 2020 J. Comput. Sci. 40 101072
[41] Binoua H, Ez-Zahraouy H, Khallouk A and Lakouari N 2020 Int. J. Mod. Phy. C 31 2050154
[42] Qiao Y F, Xue Y, Wang X, Cen B L, Wang Y, Pan W and Zhang Y X 2021 Phys. A 574 125996
[43] Meng J P and Zhang J F 2006 Mod. Phys. Lett. B 20 835
[44] Pérez-Sansalvador J C, Lakouari N, Garcia-Diaz J and Pomares Hernández S E 2020 Appl. Sci. 10 1592
[45] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[46] Li Q L, Wang J X, Ye L L, Jiang R and Wang B H 2023 Int. J. Mod. Phy. C 34 23050120
[1] WT-FCTGN: A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
Zhifang Liao(廖志芳), Ke Sun(孙轲), Wenlong Liu(刘文龙), Zhiwu Yu(余志武), Chengguang Liu(刘承光), and Yucheng Song(宋禹成). Chin. Phys. B, 2024, 33(7): 078901.
[2] Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
Jin Shen(申瑾), Jian-Dong Zhao(赵建东), Hua-Qing Liu(刘华清), Rui Jiang(姜锐), and Zhi-Xin Yu(余智鑫). Chin. Phys. B, 2024, 33(3): 030504.
[3] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[4] Efficient control of connected and automated vehicles on a two-lane highway with a moving bottleneck
Huaqing Liu(刘华清) and Rui Jiang(姜锐). Chin. Phys. B, 2023, 32(5): 054501.
[5] A stochastic two-dimensional intelligent driver car-following model with vehicular dynamics
Hong-Sheng Qi(祁宏生) and Yu-Yan Ying(应雨燕). Chin. Phys. B, 2023, 32(4): 044501.
[6] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[7] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[8] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[9] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[10] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[11] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[12] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[13] Three-dimensional clogging structures of granular spheres near hopper orifice
Jing Yang(杨敬), Dianjinfeng Gong(宫殿锦丰), Xiaoxue Wang(汪晓雪), Zhichao Wang(王志超), Jianqi Li(李建奇), Bingwen Hu(胡炳文), and Chengjie Xia(夏成杰). Chin. Phys. B, 2022, 31(1): 014501.
[14] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[15] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
No Suggested Reading articles found!