Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058301    DOI: 10.1088/1674-1056/ad1a90
SPECIAL TOPIC—Recent progress on kagome metals and superconductors Prev   Next  

Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading

Youyuan Zhu(朱友源)1,2, Ruizhe Shen(沈瑞哲)1,2, Hao Dong(董昊)1,3,4,†, and Wei Wang(王炜)2,3,‡
1 Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China;
2 Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China;
3 Institute for Brain Sciences, Nanjing University, Nanjing 210023, China;
4 State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
Abstract  The COVID-19 pandemic has caused severe global disasters, highlighting the importance of understanding the details and trends of epidemic transmission in order to introduce efficient intervention measures. While the widely used deterministic compartmental models have qualitatively presented continuous "analytical" insight and captured some transmission features, their treatment usually lacks spatiotemporal variation. Here, we propose a stochastic individual dynamical (SID) model to mimic the random and heterogeneous nature of epidemic propagation. The SID model provides a unifying framework for representing the spatiotemporal variations of epidemic development by tracking the movements of each individual. Using this model, we reproduce the infection curves for COVID-19 cases in different areas globally and find the local dynamics and heterogeneity at the individual level that affect the disease outbreak. The macroscopic trend of virus spreading is clearly illustrated from the microscopic perspective, enabling a quantitative assessment of different interventions. Seemingly, this model is also applicable to studying stochastic processes at the "meter scale", e.g., human society's collective dynamics.
Keywords:  Brownian motion      epidemic spreading      heterogeneity  
Received:  01 November 2023      Revised:  07 December 2023      Accepted manuscript online:  04 January 2024
PACS:  83.10.Mj (Molecular dynamics, Brownian dynamics)  
  89.75.-k (Complex systems)  
  87.23.Ge (Dynamics of social systems)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 22273034) and the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University. Parts of the calculations were performed using computational resources on an IBM Blade cluster system from the High-Performance Computing Center (HPCC) of Nanjing University.
Corresponding Authors:  Hao Dong,E-mail:donghao@nju.edu.cn;Wei Wang,E-mail:wangwei@nju.edu.cn     E-mail:  donghao@nju.edu.cn;wangwei@nju.edu.cn

Cite this article: 

Youyuan Zhu(朱友源), Ruizhe Shen(沈瑞哲), Hao Dong(董昊), and Wei Wang(王炜) Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading 2024 Chin. Phys. B 33 058301

[1] Karlsson E K, Kwiatkowski D P and Sabeti P C 2014 Nat. Rev. Genet. 15 379
[2] Zhu F C, Li Y H, Guan X H, et al. 2020 Lancet 395 1845
[3] Brauer F 2008 Mathematical Epidemiology (Berlin, Heidelberg:Springer) pp. 19-79
[4] Kermack W O and McKendrick A G 1927 Proc. R. Soc. London, Ser. A 115 700
[5] Matis J H and Hartley H O 1971 Biometrics 27 77
[6] Tian H Y, Liu Y H, Li Y D, et al. 2020 Science 368 638
[7] Yang Z F, Zeng Z Q, Wang K, et al. 2020 J. Thorac. Dis. 12 165
[8] Wu J T, Leung K and Leung G M 2020 Lancet 395 689
[9] Li R Y, Pei S, Chen B, Song Y M, Zhang T, Yang W and Shaman J 2020 Science 368 489
[10] Maier B F and Brockmann D 2020 Science 368 742
[11] Lai S J, Ruktanonchai N W, Zhou L C, Prosper O, Luo W, Floyd J R, Wesolowski A, Santillana M, Zhang C, Du X J, Yu H J and Tatem A J 2020 Nature 585 410
[12] Funk S, Salathe M and Jansen V A A 2010 J. R. Soc. Interface 7 1247
[13] Perra N 2021 Phys. Rep. 913 1
[14] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[15] Gonzalez M C and Herrmann H J 2004 Phys. A 340 741
[16] Frasca M, Buscarino A, Rizzo A, Fortuna L and Boccaletti S 2006 Phys. Rev. E 74 036110
[17] Peruani F and Sibona G J 2008 Phys. Rev. Lett 100 168103
[18] Liu Z Z, Wang X Y and Wang M G 2010 Chaos 20 023128
[19] Rodriguez J P, Ghanbarnejad F and Eguiluz V M 2019 Sci. Rep. 9 6463
[20] Levis D, Diaz-Guilera A, Pagonabarraga I and Starnini M 2020 Phys. Rev. Res. 2 032056
[21] Norambuena A, Valencia F J and Guzman-Lastra F 2020 Sci. Rep. 10 20845
[22] Sajjadi S, Hashemi A and Ghanbarnejad F 2021 Phys. Rev. E 104 014313
[23] Bestehorn M, Michelitsch T M, Collet B A, Riascos A P and Nowakowski A F 2022 Phys. Rev. E 105 024205
[24] Zhu Y Y, Shen R Z, Dong H and Wang W 2023 Plos One 18 0286558
[25] Einstein A 1905 Ann. Phys. 17 549
[26] Bartumeus F, Catalan J, Fulco U, Lyra M and Viswanathan G 2002 Phys. Rev. Lett. 88 097901
[27] Lind P G and Moreira A 2015 Commun. Comput. Phys. 18 417
[28] WHO https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200301-sitrep-41-covid-19.pdf?sfvrsn=6768306d\textunderscore2[2023-12]
[29] Chu D K, Akl E A, Duda S, Solo K, Yaacoub S, Schunemann H J and Review C S U 2020 Lancet 395 1973
[30] Bourouiba L, Dehandschoewercker E and Bush J W M 2014 J. Fluid Mech. 745 537
[31] Li Q, Guan X H, Wu P, et al. 2020 N. Engl. J. Med. 382 1199
[32] Zhao S, Lin Q Y, Ran J J, Musa S S, Yang G P, Wang W M, Lou Y J, Gao D Z, Yang L, He D H and Wang M H 2020 Int. J. Infect. Dis. 92 214
[33] Nielsen B F, Simonsen L and Sneppen K 2021 Phys. Rev. Lett 126 118301
[34] Fang H M, Wang L and Yang Y 2020 J. Public Econ. 191 104272
[35] Britton T, Ball F and Trapman P 2020 Science 369 846
[1] Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids
H P Zhang(张华平), B B Fan(范蓓蓓), J Q Wu(吴佳琦), and M Z Li(李茂枝). Chin. Phys. B, 2024, 33(1): 016101.
[2] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[3] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[4] Unpinning the spiral waves by using parameter waves
Lu Peng(彭璐) and Jun Tang(唐军). Chin. Phys. B, 2021, 30(5): 058202.
[5] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[6] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[7] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[8] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[9] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[10] Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋). Chin. Phys. B, 2020, 29(2): 026103.
[11] Nonperturbative effects of attraction on dynamical behaviors of glass-forming liquids
Xiaoyan Sun(孙晓燕), Haibo Zhang(张海波), Lijin Wang(王利近), Zexin Zhang(张泽新), and Yuqiang Ma(马余强)\ccclink. Chin. Phys. B, 2020, 29(12): 126201.
[12] Metabasin dynamics of supercooled polymer melt
Jian Li(李健), Bo-Kai Zhang(张博凯). Chin. Phys. B, 2019, 28(12): 126101.
[13] Quantitative heterogeneity and subgroup classification based on motility of breast cancer cells
Ling Xiong(熊玲), Yanping Liu(刘艳平), Ruchuan Liu(刘如川), Wei Yuan(袁伟), Gao Wang(王高), Yi He(何益), Jianwei Shuai(帅建伟), Yang Jiao(焦阳), Xixiang Zhang(张溪祥), Weijing Han(韩伟静), Junle Qu(屈军乐), Liyu Liu(刘雳宇). Chin. Phys. B, 2019, 28(10): 108701.
[14] Entrainment range affected by the heterogeneity in the amplitude relaxation rate of suprachiasmatic nucleus neurons
Chang-Gui Gu(顾长贵), Ping Wang(王萍), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2019, 28(1): 018701.
[15] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
No Suggested Reading articles found!