|
|
Vibronic effect study of 1A2 state of H2O and D2O |
Bei-Yuan Zhang(张倍源)1, Li-Han Wang(王礼涵)1, Jian-Hui Zhu(朱剑辉)1, Wei-Qing Xu(徐卫青)2, Zi-Ru Ma(马子茹)1, Xiao-Li Zhao(赵小利)3, Yong Wu(吴勇)4,5,6,†, and Lin-Fan Zhu(朱林繁)1,‡ |
1 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China; 3 Department of Physics, Yantai University, Yantai 264005, China; 4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 5 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China; 6 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China |
|
|
Abstract The generalized oscillator strengths of the dipole-forbidden excitations of the ${}^{1}$A$_{2}$ of $\mathrm{H_2O}$ and $\mathrm{D_2O}$ were calculated with the time dependent density functional theory, by taking into account the vibronic effect. It is found that the vibronic effect converts the dipole-forbidden excitation of the ${}^{1}$A$_{2}$ into a dipole-allowed one, which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region. The present investigation shows that the vibronic effect of $\mathrm{H_2O}$ is slightly stronger than that of $\mathrm{D_2O}$, which exhibits a clear isotopic effect.
|
Received: 15 January 2024
Revised: 28 January 2024
Accepted manuscript online: 01 February 2024
|
PACS:
|
34.50.Gb
|
(Electronic excitation and ionization of molecules)
|
|
34.80.Gs
|
(Molecular excitation and ionization)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
95.30.Ky
|
(Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12334010, 12174259, and 11604003). |
Corresponding Authors:
Yong Wu, Lin-Fan Zhu
E-mail: wu_yong@iapcm.ac.cn;lfzhu@ustc.edu.cn
|
Cite this article:
Bei-Yuan Zhang(张倍源), Li-Han Wang(王礼涵), Jian-Hui Zhu(朱剑辉), Wei-Qing Xu(徐卫青), Zi-Ru Ma(马子茹), Xiao-Li Zhao(赵小利), Yong Wu(吴勇), and Lin-Fan Zhu(朱林繁) Vibronic effect study of 1A2 state of H2O and D2O 2024 Chin. Phys. B 33 053401
|
[1] Sun Q, Wang S X, Xu Y C, Ma K, Wang L H, Li T J and Zhu L F 2022 J. Electron. Spectros Relat. Phenomena 258 147218 [2] Watanabe N, Suzuki D and Takahashi M 2011 J. Chem. Phys. 134 234309 [3] Chen J F, Wang S X, Ma K and Zhu L F 2022 J. Phys. B: At. Mol. Opt. Phys. 55 175201 [4] Watanabe N and Takahashi M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 135202 [5] Chen J F, Wang S X, Li H H, Zhu J H, Nie Z W, Li T J, Ma Z R, Wang L H and Zhu L F 2023 Chem. Phys. 568 111826 [6] Watanabe N and Takahashi M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 155203 [7] Wang L H, Du X J, Xu Y C, Nie Z W, Wang D H, Wang S X and Zhu L F 2022 J. Phys. Chem. A 126 453 [8] Watanabe N and Takahashi M 2023 J. Phys. Chem. A 127 1866 [9] Watanabe N and Takahashi M 2022 J. Phys. B: At. Mol. Opt. Phys. 55 015201 [10] Campbell L and Brunger M J 2012 Plasma Sources Sci. Technol. 22 013002 [11] Garrett B C, Dixon D A, Camaioni D M, et al. 2005 Chem. Rev. 105 355 [12] Alizadeh E and Sanche L 2012 Chem. Rev. 112 5578 [13] Boudaiffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2000 Science 287 1658 [14] Champion C 2003 Phys. Med. Biol. 48 2147 [15] Nikjoo, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D and Uehara S 2016 Rep. Prog. Phys. 79 116601 [16] Incerti S, Kyriakou I, Bernal M A, Bordage M C, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee S B, Meylan S, Min C H, Shin W G, Nieminen P, Sakata D, Tang N, Villagrasa C, Tran H N and Brown J M C 2018 Med. Phys. 45 e722 [17] Xu W Q, Ma Z R, Peng Y G, Du X J, Xu Y C, Wang L H, Li B, Zhang H R, Zhang B Y, Zhu J H, Wang S X, Wu Y, Wang J G and Zhu L F 2021 Phys. Rev. A 103 032808 [18] Chantranupong L, Hirsch G, Buenker R J, Kimura M and Dillon M A 1991 Chem. Phys. 154 13 [19] Gil T J, Rescigno T N, McCurdy C W and Lengsfield B H 1994 Phys. Rev. A 49 2642 [20] Mielczarek S and Miller K 1971 Chem. Phys. Lett. 10 369 [21] Muñoz A, Blanco F, Garcia G, Thorn P, Brunger M, Sullivan J and Buckman S 2008 Int. J. Mass. Spectrom 277 175 [22] Ralphs K, Serna G, Hargreaves L R, Khakoo M A, Winstead C and McKoy V 2013 J. Phys. B: At. Mol. Opt. Phys. 46 125201 [23] Hargreaves L, Ralphs K, Serna G, Khakoo M A, Winstead C and McKoy V 2012 J. Phys. B: At. Mol. Opt. Phys. 45 201001 [24] Thorn P A, Brunger M J, Teubner P J O, Diakomichalis N, Maddern T, Bolorizadeh M A, Newell W R, Kato H, Hoshino M, Tanaka H, Cho H and Kim Y K 2007 J. Chem. Phys. 126 064306 [25] Thorn P A, Brunger M J, Kato H, Hoshino M and Tanaka H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 697 [26] Brunger M J, Thorn P A, Campbell L, Diakomichalis N, Kato H, Kawahara H, Hoshino M, Tanaka H and Kim Y K 2008 Int. J. Mass. Spectrom. 271 80 [27] Lassettre E N and Skerbele A 2003 J. Chem. Phys. 60 2464 [28] Ma Z R, Wang S X, Peng Y G, Zhu J H, Xu Y C, Du X J, Wang L H, Xu W Q, Wu Y, Wang J G and Zhu L F 2022 Phys. Rev. A 105 062817 [29] Bauernschmitt R and Ahlrichs R 1996 Chem. Phys. Lett. 256 454 [30] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 [31] Bethe H 1932 Z. Phys. Chem. 76 293 [32] Bethe H 1930 Ann. Phys. 397 325 [33] Inokuti M 1971 Rev. Mod. Phys. 43 297 [34] Kendall R A, Dunning Thom H J and Harrison R J 1992 J. Chem. Phys. 96 6796 [35] Dunning Thom H J 1989 J. Chem. Phys. 90 1007 [36] Merrick J P, Moran D and Radom L 2007 J. Phys. Chem. A 111 11683 [37] Jiménez-Hoyos C A, Janesko B G and Scuseria G E 2008 Phys. Chem. Chem. Phys. 10 6621 [38] Gupta V D 1981 J. Phys. B: At. Mol. Opt. Phys. 14 1761 [39] Mota R, Parafita R, Giuliani A, Hubin-Franskin M J, Lourençco J, Garcia G, Hoffmann S, Mason N, Ribeiro P, Raposo M and Limão-Vieira P 2005 Chem. Phys. Lett. 416 152 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|