Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 053401    DOI: 10.1088/1674-1056/ad24d9
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Vibronic effect study of 1A2 state of H2O and D2O

Bei-Yuan Zhang(张倍源)1, Li-Han Wang(王礼涵)1, Jian-Hui Zhu(朱剑辉)1, Wei-Qing Xu(徐卫青)2, Zi-Ru Ma(马子茹)1, Xiao-Li Zhao(赵小利)3, Yong Wu(吴勇)4,5,6,†, and Lin-Fan Zhu(朱林繁)1,‡
1 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China;
3 Department of Physics, Yantai University, Yantai 264005, China;
4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
5 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
6 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract  The generalized oscillator strengths of the dipole-forbidden excitations of the ${}^{1}$A$_{2}$ of $\mathrm{H_2O}$ and $\mathrm{D_2O}$ were calculated with the time dependent density functional theory, by taking into account the vibronic effect. It is found that the vibronic effect converts the dipole-forbidden excitation of the ${}^{1}$A$_{2}$ into a dipole-allowed one, which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region. The present investigation shows that the vibronic effect of $\mathrm{H_2O}$ is slightly stronger than that of $\mathrm{D_2O}$, which exhibits a clear isotopic effect.
Keywords:  water      heavy water      generalized oscillator strength      vibronic effect      isotope effect  
Received:  15 January 2024      Revised:  28 January 2024      Accepted manuscript online:  01 February 2024
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  34.80.Gs (Molecular excitation and ionization)  
  31.15.ee (Time-dependent density functional theory)  
  95.30.Ky (Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12334010, 12174259, and 11604003).
Corresponding Authors:  Yong Wu, Lin-Fan Zhu     E-mail:  wu_yong@iapcm.ac.cn;lfzhu@ustc.edu.cn

Cite this article: 

Bei-Yuan Zhang(张倍源), Li-Han Wang(王礼涵), Jian-Hui Zhu(朱剑辉), Wei-Qing Xu(徐卫青), Zi-Ru Ma(马子茹), Xiao-Li Zhao(赵小利), Yong Wu(吴勇), and Lin-Fan Zhu(朱林繁) Vibronic effect study of 1A2 state of H2O and D2O 2024 Chin. Phys. B 33 053401

[1] Sun Q, Wang S X, Xu Y C, Ma K, Wang L H, Li T J and Zhu L F 2022 J. Electron. Spectros Relat. Phenomena 258 147218
[2] Watanabe N, Suzuki D and Takahashi M 2011 J. Chem. Phys. 134 234309
[3] Chen J F, Wang S X, Ma K and Zhu L F 2022 J. Phys. B: At. Mol. Opt. Phys. 55 175201
[4] Watanabe N and Takahashi M 2021 J. Phys. B: At. Mol. Opt. Phys. 54 135202
[5] Chen J F, Wang S X, Li H H, Zhu J H, Nie Z W, Li T J, Ma Z R, Wang L H and Zhu L F 2023 Chem. Phys. 568 111826
[6] Watanabe N and Takahashi M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 155203
[7] Wang L H, Du X J, Xu Y C, Nie Z W, Wang D H, Wang S X and Zhu L F 2022 J. Phys. Chem. A 126 453
[8] Watanabe N and Takahashi M 2023 J. Phys. Chem. A 127 1866
[9] Watanabe N and Takahashi M 2022 J. Phys. B: At. Mol. Opt. Phys. 55 015201
[10] Campbell L and Brunger M J 2012 Plasma Sources Sci. Technol. 22 013002
[11] Garrett B C, Dixon D A, Camaioni D M, et al. 2005 Chem. Rev. 105 355
[12] Alizadeh E and Sanche L 2012 Chem. Rev. 112 5578
[13] Boudaiffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2000 Science 287 1658
[14] Champion C 2003 Phys. Med. Biol. 48 2147
[15] Nikjoo, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D and Uehara S 2016 Rep. Prog. Phys. 79 116601
[16] Incerti S, Kyriakou I, Bernal M A, Bordage M C, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee S B, Meylan S, Min C H, Shin W G, Nieminen P, Sakata D, Tang N, Villagrasa C, Tran H N and Brown J M C 2018 Med. Phys. 45 e722
[17] Xu W Q, Ma Z R, Peng Y G, Du X J, Xu Y C, Wang L H, Li B, Zhang H R, Zhang B Y, Zhu J H, Wang S X, Wu Y, Wang J G and Zhu L F 2021 Phys. Rev. A 103 032808
[18] Chantranupong L, Hirsch G, Buenker R J, Kimura M and Dillon M A 1991 Chem. Phys. 154 13
[19] Gil T J, Rescigno T N, McCurdy C W and Lengsfield B H 1994 Phys. Rev. A 49 2642
[20] Mielczarek S and Miller K 1971 Chem. Phys. Lett. 10 369
[21] Muñoz A, Blanco F, Garcia G, Thorn P, Brunger M, Sullivan J and Buckman S 2008 Int. J. Mass. Spectrom 277 175
[22] Ralphs K, Serna G, Hargreaves L R, Khakoo M A, Winstead C and McKoy V 2013 J. Phys. B: At. Mol. Opt. Phys. 46 125201
[23] Hargreaves L, Ralphs K, Serna G, Khakoo M A, Winstead C and McKoy V 2012 J. Phys. B: At. Mol. Opt. Phys. 45 201001
[24] Thorn P A, Brunger M J, Teubner P J O, Diakomichalis N, Maddern T, Bolorizadeh M A, Newell W R, Kato H, Hoshino M, Tanaka H, Cho H and Kim Y K 2007 J. Chem. Phys. 126 064306
[25] Thorn P A, Brunger M J, Kato H, Hoshino M and Tanaka H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 697
[26] Brunger M J, Thorn P A, Campbell L, Diakomichalis N, Kato H, Kawahara H, Hoshino M, Tanaka H and Kim Y K 2008 Int. J. Mass. Spectrom. 271 80
[27] Lassettre E N and Skerbele A 2003 J. Chem. Phys. 60 2464
[28] Ma Z R, Wang S X, Peng Y G, Zhu J H, Xu Y C, Du X J, Wang L H, Xu W Q, Wu Y, Wang J G and Zhu L F 2022 Phys. Rev. A 105 062817
[29] Bauernschmitt R and Ahlrichs R 1996 Chem. Phys. Lett. 256 454
[30] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[31] Bethe H 1932 Z. Phys. Chem. 76 293
[32] Bethe H 1930 Ann. Phys. 397 325
[33] Inokuti M 1971 Rev. Mod. Phys. 43 297
[34] Kendall R A, Dunning Thom H J and Harrison R J 1992 J. Chem. Phys. 96 6796
[35] Dunning Thom H J 1989 J. Chem. Phys. 90 1007
[36] Merrick J P, Moran D and Radom L 2007 J. Phys. Chem. A 111 11683
[37] Jiménez-Hoyos C A, Janesko B G and Scuseria G E 2008 Phys. Chem. Chem. Phys. 10 6621
[38] Gupta V D 1981 J. Phys. B: At. Mol. Opt. Phys. 14 1761
[39] Mota R, Parafita R, Giuliani A, Hubin-Franskin M J, Lourençco J, Garcia G, Hoffmann S, Mason N, Ribeiro P, Raposo M and Limão-Vieira P 2005 Chem. Phys. Lett. 416 152
[1] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[2] Novel self-embedding holographic watermarking image encryption protection scheme
Linian Wang(王励年), Nanrun Zhou(周楠润), Bo Sun(孙博), Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(5): 050501.
[3] Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
Dawei Ding(丁大为), Yan Niu(牛炎), Hongwei Zhang(张红伟), Zongli Yang(杨宗立), Jin Wang(王金), Wei Wang(王威), and Mouyuan Wang(王谋媛). Chin. Phys. B, 2024, 33(5): 050503.
[4] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[5] Characteristic analysis of scattering field in two-layer media by Green's function
Ping Zhang(张萍), Zhi-Ying Liu(刘智颖), Shou-Guo Yan(阎守国), Juan Huang(黄娟), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2023, 32(6): 064301.
[6] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[7] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[8] Revising the H216O line-shape parameters around 1.1 μm based on the speed-dependent Nelkin-Ghatak profile and the Hartmann-Tran profile
Hui Zhang(张惠), Jianjie Zheng(郑健捷), Qiang Liu(刘强), Wenyue Zhu(朱文越), Xianmei Qian(钱仙妹), Guisheng Jiang(江贵生), Shenlong Zha(查申龙), Qilei Zhang(张启磊), and Hongliang Ma(马宏亮). Chin. Phys. B, 2023, 32(12): 123301.
[9] Energy-distributable waterborne acoustic launcher for directional sensing
Tian Yang(杨天), Wenting Gao(高文婷), Shida Fan(范世达), Jie Ren(任捷), and Tianzhi Yang(杨天智). Chin. Phys. B, 2023, 32(12): 124302.
[10] Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations
Xi-Zhong Liu(刘希忠), Jie-Tong Li(李界通), and Jun Yu(俞军). Chin. Phys. B, 2023, 32(11): 110206.
[11] First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors
Jie Cheng(程杰), Yu-Lan Cheng(程玉兰), Bin Li(李斌), and Sheng-Li Liu(刘胜利). Chin. Phys. B, 2023, 32(10): 107401.
[12] Non-Gaussian approach: Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
Hao Wu(吴昊), Hang Zhang(张航), Yiwu Zhu(朱益武), Gaofeng Luo(罗高峰), Zhiyue Zuo(左峙岳), Xinchao Ruan(阮新朝), and Ying Guo(郭迎). Chin. Phys. B, 2023, 32(10): 100311.
[13] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[14] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[15] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
No Suggested Reading articles found!