Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044501    DOI: 10.1088/1674-1056/ad1a8d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Passive particles driven by self-propelled particle: The wake effect

Kai-Xuan Zheng(郑凯选)1, Jing-Wen Wang(汪静文)1, Shi-Feng Wang(王世锋)2,†, and De-Ming Nie(聂德明)1
1 Institute of Fluid Mechanics, China Jiliang University, Hangzhou 310018, China;
2 Department of Mechanical Engineering, Hangzhou Vocational & Technical College, Hangzhou 310018, China
Abstract  This work focuses on numerically studying hydrodynamic interaction between a passive particle and a self-propelled particle, termed a squirmer, by using a two-dimensional lattice Boltzmann method (LBM). It is found that the squirmer can capture a passive particle and propel it simultaneously, provided the passive particle is situated within the squirmer's wake. Our research shows that the critical capture distance, which determines whether the particle is captured, primarily depends on the intensity of the squirmer's dipolarity. The stronger dipolarity of squirmer results in an increased critical capture distance. Conversely, the Reynolds number is found to have minimal influence on this interaction. Interestingly, the passive particle, when driven by the squirmer's wake, contributes to a reduction in the squirmer's drag. This results in a mutual acceleration for both particles. Our findings can provide valuable perspectives for formulating the principles of reducing the drag of micro-swimmers and help to achieve the goal of using micro-swimmers to transport goods without physical tethers.
Keywords:  lattice Boltzmann method (LBM)      self-propelled particles      particle-laden flow  
Received:  16 October 2023      Revised:  14 December 2023      Accepted manuscript online:  04 January 2024
PACS:  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
  47.55.Kf (Particle-laden flows)  
  47.85.-g (Applied fluid mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12132015 and 11972336).
Corresponding Authors:  Shi-Feng Wang     E-mail:  wsf@hzvtc.edu.cn

Cite this article: 

Kai-Xuan Zheng(郑凯选), Jing-Wen Wang(汪静文), Shi-Feng Wang(王世锋), and De-Ming Nie(聂德明) Passive particles driven by self-propelled particle: The wake effect 2024 Chin. Phys. B 33 044501

[1] Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa F R C, Tiniakou E, Greiling T, Ruff W, Barbieri A, Kriegel C, Mehta S S, Knight J R, Jain D, Goodman A L and Kriegel M A 2018 Science 359 1156
[2] Schmidt C K, Medina-Sanchez M, Edmondson R J and Schmidt O G 2020 Nat. Commun. 11 5618
[3] Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton E E, Zhang L, Lauga E and Wang J 2012 Small 8 460
[4] Hu M, Ge X, Chen X, Mao W, Qian X and Yuan W E 2020 Pharmaceutics 12 665
[5] Chen Y, Huang J, Meng F H, Li T C and Ai B Q 2021 Chin. Phys. B 30 100510
[6] Wang Y, Shen Z, Xia Y, Feng G and Tian W 2020 Chin. Phys. B 29 053103
[7] Park B W, Zhuang J, Yasa O and Sitti M 2017 ACS Nano 11 8910
[8] Jeanneret R, Pushkin D O, Kantsler V and Polin M 2016 Nat. Commun. 7 12518
[9] Dai B, Wang J, Xiong Z, Zhan X, Dai W, Li C C, Feng S P and Tang J 2016 Nat. Nanotechnol. 11 1087
[10] Hua Y, He L and Zhang L 2017 Chin. Phys. B 26 080702
[11] Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak A F, Sourjik V and Sitti M 2018 Sci. Robot. 3 17
[12] Davies Wykes M S, Zhong X, Tong J, Adachi T, Liu Y, Ristroph L, Ward M D, Shelley M J and Zhang J 2017 Soft Matter 13 4681
[13] Zhu W J, Huang X Q and Ai B Q 2018 Chin. Phys. B 27 080504
[14] Sharma M, Pandey C, Sharma N, Kamal M A, Sayeed U and Akhtar S 2018 Anticancer Agents Med. Chem. 18 2078
[15] Klochkov S G, Neganova M E, Nikolenko V N, Chen K, Somasundaram S G, Kirkland C E and Aliev G 2021 Semin. Cancer Biol. 69 190
[16] Lighthill M J 1952 Commun. Pure Appl. Math. 5 109
[17] Blake J R 1971 J. Fluid Mech. 46 199
[18] Blake J R 1971 Math. Proc. Cambridge Philos. Soc. 70 303
[19] Pedley T J, Brumley D R and Goldstein R E 2015 J. Fluid Mech. 798 165
[20] Pedley T J 2016 Ima Journal of Applied Mathematics 81 488
[21] Kantsler V, Dunkel J, Polin M and Goldstein R E 2013 Proc. Natl. Acad. Sci. USA 110 1187
[22] Theers M, Westphal E, Qi K, Winkler R G and Gompper G 2018 Soft Matter 14 8590
[23] Uspal W E, Popescu M N, Dietrich S and Tasinkevych M 2015 Soft Matter 11 434
[24] Holm C, Kremer K and Bolhuis P G 2009 Advanced computer simulation approaches for soft matter sciences III (Heidelberg:Springer Berlin) p. 237
[25] Daddi-Moussa-Ider A, Lisicki M and Mathijssen A J T M 2020 Phys. Rev. Appl. 14 024071
[26] Ouyang Z, Lin Z, Yu Z, Lin J and Phan-Thien N 2022 J. Fluid Mech. 939 A32
[27] Ouyang Z and Lin J 2021 Phys. Fluids 33 073302
[28] Felderhof B U 2014 Phys. Rev. E 90 5
[29] Ishimoto K and Gaffney E A 2014 Phys. Rev. E 90 012704
[30] Ouyang Z, Lin Z, Lin J, Yu Z and Phan-Thien N 2023 J. Fluid Mech. 959 A25
[31] Nie D, Ying Y, Guan G, Lin J and Ouyang Z 2023 J. Fluid Mech. 960 A31
[32] Ying Y, Jiang T, Nie D and Lin J 2022 Phys. Fluids 34 1063
[33] Clopés J, Gompper G and Winkler R G 2020 Soft Matter 10676
[34] Zheng K, Wang J, Zhang P and Nie D 2023 AIP Adv. 13 075011
[35] Qian Y, d'Humiéres D and Lallemand P 1992 Europhys. Lett. 17 479
[36] Lallemand P and Luo L S 2003 J. Comput. Phys. 184 406
[37] Bouzidi M, Firdaouss M and Lallemand P 2001 Phys. Fluids 13 3452
[38] Aidun C K, Lu Y and Ding E J 1998 J. Fluid Mech. 373 287
[39] Glowinski R, Pan T W, Hesla T I and Joseph D 1999 Int. J. Multiphase Flow 25 755
[1] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[2] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[3] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[4] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
[5] Particle transport behavior in air channel flow with multi-group Lagrangian tracking
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014702.
[6] Lattice-Boltzmann simulation of particle-laden flow over a backward-facing step
Chen Sheng (陈胜), Shi Bao-Chang (施保昌), Liu Zhao-Hui (柳朝晖), He Zhu (贺铸), Guo Zhao-Li (郭照立), Zheng Chu-Guang (郑楚光). Chin. Phys. B, 2004, 13(10): 1657-1664.
No Suggested Reading articles found!