Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058701    DOI: 10.1088/1674-1056/ab7e9b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study

Jing-Jing Wang(王静静)1, Yang Yao(姚洋)1, Zhi-Wei Gao(高志伟)2, Xiao-Li Li(李小俚)3, Jun-Song Wang(王俊松)1
1 School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China;
2 Faculty of Engineering and Environment, Northumbria University, NE1 8ST, UK;
3 National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
Abstract  Parkinson's disease (PD) is characterized by pathological spontaneous beta oscillations (13 Hz-35 Hz) often observed in basal ganglia (BG) composed of subthalamic nucleus (STN) and globus pallidus (GPe) populations. From the viewpoint of dynamics, the spontaneous oscillations are related to limit cycle oscillations in a nonlinear system; here we employ the bifurcation analysis method to elucidate the generating mechanism of the pathological spontaneous beta oscillations underlined by coupling strengths and intrinsic properties of the STN-GPe circuit model. The results reveal that the increase of inter-coupling strength between STN and GPe populations induces the beta oscillations to be generated spontaneously, and causes the oscillation frequency to decrease. However, the increase of intra-coupling (self-feedback) strength of GPe can prevent the model from generating the oscillations, and dramatically increase the oscillation frequency. We further provide a theoretical explanation for the role played by the inter-coupling strength of GPe population in the generation and regulation of the oscillations. Furthermore, our study reveals that the intra-coupling strength of the GPe population provides a switching mechanism on the generation of the abnormal beta oscillations: for small value of the intra-coupling strength, STN population plays a dominant role in inducing the beta oscillations; while for its large value, the GPe population mainly determines the generation of this oscillation.
Keywords:  STN-GPe model      coupling strength      beta oscillation      bifurcation  
Received:  21 January 2020      Revised:  25 February 2020      Accepted manuscript online: 
PACS:  87.19.lj (Neuronal network dynamics)  
  87.19.ln (Oscillations and resonance)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208 and 61876132) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCYBJC47700).
Corresponding Authors:  Jun-Song Wang     E-mail:  wjsong2004@126.com

Cite this article: 

Jing-Jing Wang(王静静), Yang Yao(姚洋), Zhi-Wei Gao(高志伟), Xiao-Li Li(李小俚), Jun-Song Wang(王俊松) Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study 2020 Chin. Phys. B 29 058701

[1] Jankovic J 2008 J. Neurol Neurosurg Psychiatry 79 368
[2] Magnin M, Morel A and Jeanmonod D 2000 Neuroscience 96 549
[3] Thomas W and Jesus S 2006 J. Neurophysiol. 95 2120
[4] Delong M and Wichmann T 2007 Arch. Neurol. 64 20
[5] Marreiros A C, Cagnan H, Moran R J, Friston K J and Brown P 2013 Neuroimage 66 301
[6] Santens P, Boon P, Roost D V and Caemaert J 2003 Acta Neurologica Belgica 103 129
[7] Hammond C, Bergman H and Brown P 2007 Trends Neurosci. 30 357
[8] Albada S J V, Gray R T, Drysdale P M and Robinson P A 2009 J. Theor. Biol. 257 664
[9] Gillies A, Willshaw D and Li Z 2002 Proc. Biol. Sci. 269 545
[10] Holt A B and Netoff T I 2014 J. Comput. Neurosci. 37 505
[11] Arvind K, Stefano C, Stefan R and Ad A 2011 Front. System Neurosci. 5 86
[12] Mccarthy M M, Moore-Kochlacs C, Gu X, Boyden E S, Han X and Kopell N 2011 Proc. Natl Acad. Sci. USA 108 11620
[13] Pasillas-Lepine and William 2013 Biol. Cybern. 107 289
[14] Pavlides A, John Hogan S and Bogacz R 2012 Eur. J. Neurosci. 36 2229
[15] Avila I, Parr-Brownlie L C, Brazhnik E, Castañeda E, Bergstrom D A and Walters J R 2010 Exp. Neurol. 221 307
[16] Moran R J, Mallet N, Litvak V, Dolan R J, Magill P J, Friston K J and Brown P 2011 Plos Comput. Biol. 7 e1002124
[17] Stein E and Bar-Gad I 2013 Exp. Neurol. 245 52
[18] Tinkhauser G, Pogosyan A, Tan H, Herz D M, Kühn A A and Brown P 2017 Brain Journal of Neurology 140 2968
[19] Chen M, Guo D, Li M, Ma T, Wu S, Ma J, Cui Y, Xia Y, Xu P and Yao D 2015 Plos Comput. Biol. 11 e1004539
[20] Chen M, Guo D, Wang T, Jing W, Xia Y, Xu P, Luo C, Valdes-Sosa P A and Yao D 2014 Plos Comput. Biol. 10 e1003495
[21] Chen M, Guo D, Xia Y and Yao D 2017 Front. Comput. Neurosci. 11 31
[22] Pavlides A, Hogan S J and Bogacz R 2015 Plos Comput. Biol. 11 e1004609
[23] Holgado A J N, Terry J R and Bogacz R 2010 J. Neurosci. 30 12340
[24] Liu F, Wang J, Liu C, Li H, Deng B, Fietkiewicz C and Loparo K A 2016 Chaos 26 123113
[25] Xia X F and Wang J S 2014 Acta Phys. Sin. 63 140503 (in Chinese)
[26] Xu Y, Zhang C H, Niebur E and Wang J S 2018 Chin. Phys. B 27 048701
[27] Liu C, Zhu Y, Liu F, Wang J, Li H, Deng B, Fietkiewicz C and Loparo K A 2017 Neural Networks: the Official Journal of the International Neural Network Society 88 65
[28] Grimbert F and Faugeras O 2006 Neural Comput. 18 3052
[29] Touboul J, Wendling F, Chauvel P and Faugeras O 2011 Neural Comput. 23 3232
[30] Spiegler A, Kiebel S J, Atay F M and Knösche T R 2010 Neuroimage 52 1041
[31] Nevado-Holgado A J, Marten F, Richardson M P and Terry J R 2012 Neuroimage 59 2374
[32] Jansen B H and Rit V G 1995 Biol. Cybern. 73 357
[33] Mina F, Benquet P, Pasnicu A, Biraben A and Wendling F 2013 Front Comput. Neurosci. 7 1
[34] Wilson H R and Cowan J D 1972 Biophys. J. 12 1
[35] Davidson C M, de Paor A M and Lowery M M 2014 IEEE Trans. Biomed. Eng. 61 957
[36] Gillies A and Willshaw D 2007 Expert Rev. Med. Devices 4 663
[37] Hallworth N E, Wilson C J and Bevan M D 2003 J. Neurosci. Official J. Soc. Neurosci. 23 7525
[38] Hitoshi K, Yoshihisa T, Atsushi N and Satomi C 2005 J. Neurosci. Official J. Soc. Neurosci. 25 8611
[39] Kita H 2007 Prog. Brain Res. 160 111
[40] Kita H and Kitaia S T 1991 Brain Res. 564 296
[41] Kazanci F G and Ermentrout B 2007 Siam Journal on Applied Mathematics 67 512
[42] Ashwin P, Coombes S and Nicks R 2016 J. Math. Neurosci. 6 2
[43] Phillips C L and Parr J M 2012 Feedback Contron Systems, 5th edn. (Beijing: Science Press) p. 482
[44] Mccarthy M M, Ching S N, Whittington M A and Kopell N 2012 Curr. Opin. Neurobiology 22 693
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[6] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[9] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[10] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[11] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[12] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[13] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
[14] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[15] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
No Suggested Reading articles found!