Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020311    DOI: 10.1088/1674-1056/ad09cd
GENERAL Prev   Next  

Gray code based gradient-free optimization algorithm for parameterized quantum circuit

Anqi Zhang(张安琪)1, Chunhui Wu(武春辉)1, and Shengmei Zhao(赵生妹)1,2,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  A Gray code based gradient-free optimization (GCO) algorithm is proposed to update the parameters of parameterized quantum circuits (PQCs) in this work. Each parameter of PQCs is encoded as a binary string, named as a gene, and a genetic-based method is adopted to select the offsprings. The individuals in the offspring are decoded in Gray code way to keep Hamming distance, and then are evaluated to obtain the best one with the lowest cost value in each iteration. The algorithm is performed iteratively for all parameters one by one until the cost value satisfies the stop condition or the number of iterations is reached. The GCO algorithm is demonstrated for classification tasks in Iris and MNIST datasets, and their performance are compared by those with the Bayesian optimization algorithm and binary code based optimization algorithm. The simulation results show that the GCO algorithm can reach high accuracies steadily for quantum classification tasks. Importantly, the GCO algorithm has a robust performance in the noise environment.
Keywords:  gradient-free optimization      Gray code      genetic-based method  
Received:  21 August 2023      Revised:  19 October 2023      Accepted manuscript online:  06 November 2023
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 61871234 and 62375140), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX19_0900).
Corresponding Authors:  Shengmei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Anqi Zhang(张安琪), Chunhui Wu(武春辉), and Shengmei Zhao(赵生妹) Gray code based gradient-free optimization algorithm for parameterized quantum circuit 2024 Chin. Phys. B 33 020311

[1] Holmes Z, Sharma K, Cerezo M and Coles P J 2022 PRX Quantum 3 010313
[2] Bharti K, Cervera-Lierta A, Kyaw T H, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann J S, Menke T, Mok W K, Sim S, Kwek L C and Aspuru-Guzik A 2021 Rev. Mod. Phys. 94 015004
[3] Cerezo M, Poremba A, Cincio L and Coles P J 2020 Quantum 4 248
[4] Cirstoiu C, Holmes Z, Iosue J, Cincio L, Coles P J and Sornborger A 2020 npj Quantum Inf. 6 82
[5] Sharma K, Khatri S, Cerezo M and Coles P J 2020 New J. Phys. 22 043006
[6] Cerezo M, Sharma K, Arrasmith A and Coles P J 2022 npj Quantum Inf. 8 113
[7] Zhang D B, Chen B L, Yuan Z H and Yin T 2022 Chin. Phys. B 12 120301
[8] Zhang A Q, He X Y and Zhao S M 2022 Quantum Inf. Process. 21 358
[9] Zhang A Q and Zhao S M 2023 Quantum Inf. Process. 22 283
[10] Zhang A Q, Wang K L, Wu Y H and Zhao S M 2023 Chin. Phys. B 32 100308
[11] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 043001
[12] Sim S, Johnson P D and Aspuru-Guzik A 2019 Adv. Quantum Technol. 2 1900070
[13] Zhu D, Linke N M, Benedetti M, Landsman K A, Nguyen N H, Alderete C H, Perdoho-Ortiz A, Korda N, Gatfoot A, Brecque C, Egan L, Predoho O and Monroe C 2019 Sci. Adv. 5 eaaw9918
[14] Sim S, Romero J, Gonthier J F and Kunitsa A A 2021 Quantum Sci. Technol. 6 025019
[15] Vidal J G, Theis D O 2018 arXiv:1812.06323 [quant-ph]
[16] Li W J, RenY H and Duan F B 2022 Chin. Phys. B 8 080503
[17] Skolik A, McClean J R, Mohseni M, Smagt P V D and Leib M 2021 Quantum Mach. Intell. 3 5
[18] Grant E, Wossnig L, Ostaszewski M and Benedetti M 2019 Quantum 3 214
[19] Zhang K N, Hsieh M H, Liu L and Tao D C 2010 arXiv:2011.06258 [quant-ph]
[20] Campos E, Nasrallah A and Biamonte J 2021 Phys. Rev. A 103 032607
[21] Iannelli G and Jansen K 2021 arXiv:2112.00426 [quant-ph]
[22] Ostaszewski M, Grant E and Benedetti M 2021 Quantum 5 391
[23] Abdul-Rahman O, Munetomo M and Akama K 2011 2011 Third World Congress on Nature and Biologically Inspired Computing, October 19-21, 2011, Salamanca, Spain, pp. 149-156
[24] Lipowski A and Lipowska D 2012 Physics A 391 2193
[25] Bergholm V, Izaac J, Schuld M et al. 2018 arXiv:1811.04968 [quant-ph]
[26] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[27] Adhikary S 2021 Quantum Inf. Process. 20 254
[1] Proposal for sequential Stern-Gerlach experiment with programmable quantum processors
Meng-Jun Hu(胡孟军), Haixing Miao(缪海兴), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(2): 020303.
[2] Quantum algorithm for minimum dominating set problem with circuit design
Haoying Zhang(张皓颖), Shaoxuan Wang(王绍轩), Xinjian Liu(刘新建), Yingtong Shen(沈颖童), and Yukun Wang(王玉坤). Chin. Phys. B, 2024, 33(2): 020310.
[3] Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments
Mandal Manoj Kumar, Choudhury Binayak S., and Samanta Soumen. Chin. Phys. B, 2024, 33(2): 020309.
[4] Simulation of optimal work extraction for quantum systems with work storage
Peng-Fei Song(宋鹏飞) and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2024, 33(2): 020312.
[5] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[6] Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
Pengli Lu(卢鹏丽), Jimao Lan(揽继茂), Jianxin Tang(唐建新), Li Zhang(张莉), Shihui Song(宋仕辉), and Hongyu Zhu(朱虹羽). Chin. Phys. B, 2024, 33(1): 018901.
[7] Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks
Jianshe Xie(谢建设) and Yumin Dong(董玉民). Chin. Phys. B, 2023, 32(12): 120302.
[8] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[9] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[10] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[11] Single-qubit quantum classifier based on gradient-free optimization algorithm
Anqi Zhang(张安琪), Kelun Wang(王可伦), Yihua Wu(吴逸华), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(10): 100308.
[12] A quantum algorithm for Toeplitz matrix-vector multiplication
Shang Gao(高尚) and Yu-Guang Yang(杨宇光). Chin. Phys. B, 2023, 32(10): 100309.
[13] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[14] Efficient semi-quantum secret sharing protocol using single particles
Ding Xing(邢丁), Yifei Wang(王艺霏), Zhao Dou(窦钊), Jian Li(李剑),Xiubo Chen(陈秀波), and Lixiang Li(李丽香). Chin. Phys. B, 2023, 32(7): 070308.
[15] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
No Suggested Reading articles found!