Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020204    DOI: 10.1088/1674-1056/ad09c9
GENERAL Prev   Next  

Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet

U. S. Mahabaleshwar1, G. P. Vanitha1, L. M. Pérez2, Emad H. Aly3,†, and I. Pop4
1 Department of Studies in Mathematics, Davangere University, Shivagangothri, Davangere, India;
2 Departamento de Física, FACI, Universidad de Tarapacá, Casilla 7D, Arica, Chile;
3 Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt;
4 Department of Mathematics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
Abstract  We report on the magnetohydrodynamic impact on the axisymmetric flow of Al2O3/Cu nanoparticles suspended in H2O past a stretched/shrinked sheet. With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles, the physical flow process is illustrated. The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations. The transformed differential equations are solved analytically. Impacts of the magnetic parameter, solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically. The skin friction and Nusselt number were also evaluated. In addition, existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one. Further, Al2O3/H2O nanofluid flow has better thermal conductivity on comparing with Cu/H2O nanofluid. Furthermore, it was found that the first solutions of the stream are stable and physically realizable, whereas those of the second ones are unstable.
Keywords:  magnetohydrodynamic      nanofluid      stretching/shrinking sheet      axisymmetric flow      analytical solution      suction/injection  
Received:  10 July 2023      Revised:  24 October 2023      Accepted manuscript online:  06 November 2023
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Hq (Ordinary differential equations)  
  44.25.+f (Natural convection)  
  44.10.+i (Heat conduction)  
Fund: LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021, Grant SA77210040.
Corresponding Authors:  Emad H. Aly     E-mail:  emad-aly@hotmail.com

Cite this article: 

U. S. Mahabaleshwar, G. P. Vanitha, L. M. Pérez, Emad H. Aly, and I. Pop Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet 2024 Chin. Phys. B 33 020204

[1] Choi S U S 1995 ASME. FED. 23199-105
[2] Buongiorno J 2006 J. Heat Transfer 128 240
[3] Wen D and Ding Y 2004 J. Thermophys. Heat Transfer 18 481
[4] Raja B, Godson L, Lal D M and Wongwises S 2010 Exp. Heat Transfer 23 317
[5] Xing M, Yu J and Wang R 2015 Int. J. Heat Mass Transfer 88 609
[6] Agarwa R, Verma K, Agrawal N K, Duchaniya R K and Singh R 2016 Appl. Therm. Eng. 102 1024
[7] Agarwal R, Verma K, Agrawal N K and Singh R 2017 Exp. Therm. Fluid Sci. 80 19
[8] Adnan, Khan U, Ahmed N, MohyudDin S T, lsulami M D and Khan I 2022 Sci. Rep. 12 1284
[9] Chavda N K, Patel G V, Bhadauria M R and Makwana M N 2015 Int. J. Res. Eng. Technol. 4 697
[10] Vanitha G P, Mahabaleshwar U S and Shadloo M S 2022 Int. Comm. Heat Mass Transfer 139 106441
[11] Sheikholeslami M, Jafaryar M, Shafee A and Babazadeh H 2020 J. Clean Prod. 261 121206
[12] Sakiadis B C 1961 AIChE J. 7 26
[13] Martins R R, Silveira F S, Martins-Costa M L and Frey S 2008 Lat. Amer. Appl. Res. 38 321
[14] Alhamaly A S, Khan M, Shuja S Z, Yilbas B S and Al-Qahtani H 2021 Case Stud. Thermal Eng. 24 100839
[15] Ariel P D 2007 Comput. Math. Appl. 54 1169
[16] Sahoo B 2010 Cent. Eur. J. Phys. 8 498
[17] Shahzad A, Ali R and Khan M 2012 Chin. Phys. Lett. 29 084705
[18] Mahabaleshwar U S, Aly E H and Anusha T 2022 Chin. J. Phys. 80 74
[19] Mahabaleshwar U S, Aly E H and Vishalakshi A B 2022 Int. J. Appl. Comput. Math. 8 113
[20] Khan U, Zaib A and Ishak A 2022 Euro. Phys. J. Spec. Top. 231 1195
[21] Khashi'ie N S, Arifin N M, Nazar R, Hafidzuddin E H, Wahi N and Pop I 2020 Chin. J. Phys. 64 251
[22] Aly E H, Benlahsen M and Guedda M 2007 J. Eng. Sci. 45 486
[23] Aly E H and Ebaid A 2014 Abst. Appl. Anal. 2014 191876
[24] Aly E H 2015 Math. Probl. Eng. 2015 563547
[25] Aly E H, Roşca A V, Roşca N C and Pop I 2021 Mathematics 9 2220
[26] Shahzad A, Ali R and Khan M 2012 Chin. Phys. Lett. 29 084705
[27] Devi S U and Devi S P A 2017 J. Nigerian Math. Soc. 36 419
[28] Ho C J, Li W K, Chang Y S and Lin C C 2010 Int. J. Therm. Sci. 49 1345
[29] Sheremet M A, Pop I and Roşca A V 2018 Int. J. Numer. Meth. Heat Fluid Flow 28 1738
[30] Ahmed N, Tassaddiq A, Alabdan R, Adnan, Khan U, Noor S, Mohyud-Din S T and Khan I 2019 Appl. Sci. 9 1976
[31] Lienhard IV J H and Lienhard V J H 2017 A Heat Transfer Texbook, 4th edn. (Cambridge: Phlogiston Press)
[32] Magyari E 2011 Acta Mech. 222 381
[33] Shahzad A, Ali R and Khan M 2012 Chin. Phys. Lett. 29 084705
[34] Whittaker E T and Watson G N 1962 A Course of Modern Analysis, 4th edn. (Cambridge: Cambridge University Press)
[35] Merkin J H 1986 J. Eng. Math. 20 171
[36] Harris S D, Ingham D B and Pop I 2009 Transp. Porous Media 77 267
[37] Aly E H 2019 Phy. Scr. 94 105223
[38] Shamshuddin M D, Saeed A, Asogwa K K, Usman and Jamshed W 2023 J. Mag. Mag. Mater. 574 170664
[39] Mahmood Z, Khan U, Saleem S, Rafique K and Eldin S M 2023 J. Mag. Mag. Mater. 573 170654
[40] Patel V K, Pandya J U and Patel M R 2023 J. Mag. Mag. Mater. 572 170591
[1] Analytical solutions to the precession relaxation of magnetization with uniaxial anisotropy
Ze-Nan Zhang(张泽南), Zhen-Lin Jia(贾镇林), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2024, 33(4): 047502.
[2] Influences of double diffusion upon radiative flow of thin film Maxwell fluid through a stretching channel
Arshad Khan, Ishtiaq Ali, Musawa Yahya Almusawa, Taza Gul, and Wajdi Alghamdi. Chin. Phys. B, 2023, 32(8): 084401.
[3] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[4] Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear
Shuai Jiang(姜帅), Zheng-Xiong Wang(王正汹), Lai Wei(魏来), and Tong Liu(刘桐). Chin. Phys. B, 2023, 32(10): 105203.
[5] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[6] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[7] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[8] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[9] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[10] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[11] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[12] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[13] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[14] Effect of patterned hydrodynamic slip on electromagnetohydrodynamic flow in parallel plate microchannel
Chun-Hong Yang(杨春红) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2020, 29(11): 114101.
[15] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
No Suggested Reading articles found!