ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon |
Si-Yu Tu(涂思语)1, De-Feng Liu(刘德峰)2, Jin-Song Liu(刘劲松)1, Zhen-Gang Yang(杨振刚)1, and Ke-Jia Wang(王可嘉)1,† |
1 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 2 AVIC Beijing Changcheng Aeronautical Measurement and Control Technology Research Institute, Beijing 101111, China |
|
|
Abstract We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
|
Received: 01 August 2023
Revised: 31 August 2023
Accepted manuscript online: 13 September 2023
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
04.30.-w
|
(Gravitational waves)
|
|
07.57.-c
|
(Infrared, submillimeter wave, microwave and radiowave instruments and equipment)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2017KFYXJJ029). |
Corresponding Authors:
Ke-Jia Wang
E-mail: wkjtode@sina.com
|
Cite this article:
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉) Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon 2024 Chin. Phys. B 33 014211
|
[1] Allen, Beijersbergen, Spreeuw and Woerdman 1922 Phys. Rev. A 45 8185 [2] Soskin M S, Gorshkov V N, Vasnetsov M V, Malos J T and Heckenberg N R 1997 Phys. Rev. A 56 4064 [3] Wang X W, Nie Z Q, Liang Y, Wang J, Li T and Jia B H 2018 Nanophotonics 7 1533 [4] Xie Z M and Zhang R X Forbes A, Oliveira M and Dennis M R 2021 Nat. Photon. 15 253 [5] Yao A M and Padgett M J 2011 Adv. Opt. Photon. 3 161 [6] Curtis J E and Grier D G 2003 Phys. Rev. Lett. 90 133901 [7] Gahagan K T and Swartzlander G A 1996 Opt. Lett. 21 827 [8] Marzo A, Caleap M and Drinkwater B W 2018 Phys. Rev. Lett. 120 044301 [9] Marzo A, Caleap M and Drinkwater B W Tao S H, Yuan X C and Lin J 2005 Opt. Express 13 7726 [10] Yan Y, Xie G D, Lavery M P J, Huang H, Ahmed N, Bao C J, Ren Y X, Cao Y W, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J and Willner A E 2014 Nat. Commun. 5 4876 [11] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2016 Nat. Commun. 6 488 [12] Wang J 2018 Photon. Res. 4 B14 [13] Zhang X H, Xia T, Cheng S B and Tao S H 2019 Opt. Commun. 431 238 [14] Teja G P, Simon C and Goyal S K 2021 Phys. Rev. A 104 043713 [15] Wallraff A, Lukashenko A, Lisenfeld J, Kemp A, Fistul M V, Koval Y and Ustinov A V 2003 Nature 425 155 [16] Chen R, Agarwal K, Sheppard C J R and Chen X D 2013 Opt. Lett. 38 3111 [17] Ostrovsky A S, Rickenstorff-Parrao C and Arrizon V 2013 Opt. Lett. 38 534 [18] Vaity P and Rusch L 2011 Opt. Lett. 40 597 [19] Kotlyar V V, Kovalev A A and Porfirev A P 2016 J. Opt. Soc. Am. 33 2376 [20] Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J and Kallfass I 2013 Nat. Photon. 7 977 [21] Akyildiz I F, Han C, Hu Z F, Nie S and Jornet J M 2022 IEEE Trans. Commun. 70 4250 [22] Schemmel P, Pisano G and Maffei B 2014 Opt. Express 22 14712 [23] Wei X L, Liu C M, Niu L T, Zhang Z Q, Wang K J, Yang Z G and Liu J S 2015 Appl. Opt. 54 10641 [24] Wang H G, Xu S X, Chen Y Y and Shen B F 2022 New J. Phys. 24 083027 [25] Troha T, Ostatnický T and Kužel P 2021 Opt. Express 29 30461 [26] Sirenko A A, Marsik P, Bernhard C, Stanislavchuk T N, Kiryukhin V and Cheong S W 2019 Phys. Rev. Lett. 122 237402 [27] Yang Y Q, Ye X, Niu L T, Wang K J, Yang Z G and Liu J S 2020 Opt. Express 28 1417 [28] Liu W Y, Yang Q L, Xu Q, Jiang X H, Wu T, Gu J Q, Han J G and Zhang W L 2022 Nanophotonics 11 3631 [29] Huang F, Yang Q L, Xu Q, Jiang X H, Wu T, Gu J Q, Han J G and Zhang W L 2023 Photon. Res. 11 431 [30] Yang Y Q, Xu Q, Liu W Y, Wu T, Gu J Q and Liu J S 2020 Appl. Opt 59 4685 [31] Tu S Y, Peng J Y, Yang Z G, Liu J S and Wang K J 2022 Opt. Express 30 39976 [32] Lv N G 2016 Fourier Optics pp. 120-125 [33] Liu Y, Zhou C X, Guo K L, Wei Z C and Liu H Z 2020 Opt. Express 31 16192 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|