CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers |
Wen-Hui Liang(梁文会)1,2,3,†, Jian Su(苏鉴)3,4,†, Yu-Tong Wang(王雨桐)1,2,†, Ying Zhang(张颖)3, Feng-Xia Hu(胡凤霞)3,4,5,‡, and Jian-Wang Cai(蔡建旺)3,4,§ |
1 Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China; 2 Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China; 3 Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Magnetic skyrmions in multilayer structures are considered as a new direction for the next generation of storage due to their small size, strong anti-interference ability, high current-driven mobility, and compatibility with existing spintronic technology. In this work, we present a tunable room temperature skyrmion platform based on multilayer stacks of MgO/FeNiB/Mo. We systematically studied the creation of magnetic skyrmions in MgO/FeNiB/Mo multilayer structures with perpendicular magnetic anisotropy (PMA). In these structures, the magnetic anisotropy changes from PMA to in-plane magnetic anisotropy (IMA) as the thickness of FeNiB layer increases. By adjusting the applied magnetic field and electric current, stable and high-density skyrmions can be obtained in the material system. The discovery of this material broadens the exploration of new materials for skyrmion and promotes the development of spintronic devices based on skyrmions.
|
Received: 10 July 2023
Revised: 30 August 2023
Accepted manuscript online: 01 September 2023
|
PACS:
|
75.70.Kw
|
(Domain structure (including magnetic bubbles and vortices))
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No.2015CB921403), the National Key Research and Development Program of China (Grant No.2016YFA0300804), and the National Natural Science Foundation of China (Grant Nos.51871236, 11874408, 51431009, 92263202, and 51971240), the Science Center of the National Science Foundation of China (Grant No.52088101), and the Strategic Priority Research Program (B, Grant No.XDB33030200) of the Chinese Academy of Sciences (CAS). |
Corresponding Authors:
Feng-Xia Hu, Jian-Wang Cai
E-mail: fxhu@iphy.ac.cn;jwcai@iphy.ac.cn
|
Cite this article:
Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺) Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers 2023 Chin. Phys. B 32 127504
|
[1] Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F and Panagopoulos C 2017 Nat. Mater. 16 898 [2] Ba Y, Zhuang S H, Zhang Y K, Wang Y T, Gao Y, Zhou H A, Chen M F, Sun W D, Liu Q, Chai G Z, Ma J, Zhang Y, Tian H F, Du H F, Jiang W J, Nan C W, Hu J M and Zhao Y G 2021 Nat. Commun. 12 322 [3] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915 [4] Müunzer W, Neubauer A, Adams T, Müuhlbauer S, Franz C, Jonietz F, Georgii R, Büoni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203 [5] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901 [6] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106 [7] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blüugel S 2011 Nat. Phys. 7 713 [8] Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M and Yang H 2017 Nat. Commun. 8 14761 [9] He M, Li G, Zhu Z Z, Zhang Y, Peng L C, Li R, Li J Q, Wei H X, Zhao T Y, Zhang X G, Wang S G, Lin S Z, Gu L, Yu G Q, Cai J W and Shen B G 2018 Phys. Rev. B 97 174419 [10] He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G and Zhang Y 2017 Appl. Phys. Lett. 111 202403 [11] Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981 [12] Moreau-Luchaire C, Mouta S C, Reyren N, Sampaio J, Vaz C A, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhuter P, George J M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444 [13] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652 [14] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742 [15] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [16] Lin S Z 2016 Phys. Rev. B 94 020402 [17] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 Science 341 636 [18] Qin Z G, Wang Y, Zhu S M, Jin C D, Fu J C, Liu Q F and Cao J W 2018 ACS Appl. Mater. Interfaces 10 36556 [19] Su J, Li G, Bai H, Zhu Z Z, Zhang Y, Kang S S, Zhu T and Cai J W 2020 J. Phys. D: Appl. Phys. 53 125003 [20] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Benjamin Jungfleisch M, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283 [21] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501 [22] Boulle O, Vogel J, Yang H X, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, and Gaudin G 2016 Nat. Nanotechnol. 11 449 [23] Chen G, Mascaraque A, N'Diaye A T and Schmid A K 2015 Appl. Phys. Lett. 106 242404 [24] Kisielewski M, Maziewski A, Polyakova T and Zablotskii V 2004 Phys. Rev. B 69 184419 [25] Gao Y, Zhang J, Dou P, Li Z, Zhu Z, Guo Y, Hu C, Qin W, He C, Shen S, Zhang Y and Wang S 2022 Chin. Phys. B 31 067502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|